000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** The code in this file implements the function that runs the
000013  ** bytecode of a prepared statement.
000014  **
000015  ** Various scripts scan this source file in order to generate HTML
000016  ** documentation, headers files, or other derived files.  The formatting
000017  ** of the code in this file is, therefore, important.  See other comments
000018  ** in this file for details.  If in doubt, do not deviate from existing
000019  ** commenting and indentation practices when changing or adding code.
000020  */
000021  #include "sqliteInt.h"
000022  #include "vdbeInt.h"
000023  
000024  /*
000025  ** Invoke this macro on memory cells just prior to changing the
000026  ** value of the cell.  This macro verifies that shallow copies are
000027  ** not misused.  A shallow copy of a string or blob just copies a
000028  ** pointer to the string or blob, not the content.  If the original
000029  ** is changed while the copy is still in use, the string or blob might
000030  ** be changed out from under the copy.  This macro verifies that nothing
000031  ** like that ever happens.
000032  */
000033  #ifdef SQLITE_DEBUG
000034  # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
000035  #else
000036  # define memAboutToChange(P,M)
000037  #endif
000038  
000039  /*
000040  ** The following global variable is incremented every time a cursor
000041  ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes.  The test
000042  ** procedures use this information to make sure that indices are
000043  ** working correctly.  This variable has no function other than to
000044  ** help verify the correct operation of the library.
000045  */
000046  #ifdef SQLITE_TEST
000047  int sqlite3_search_count = 0;
000048  #endif
000049  
000050  /*
000051  ** When this global variable is positive, it gets decremented once before
000052  ** each instruction in the VDBE.  When it reaches zero, the u1.isInterrupted
000053  ** field of the sqlite3 structure is set in order to simulate an interrupt.
000054  **
000055  ** This facility is used for testing purposes only.  It does not function
000056  ** in an ordinary build.
000057  */
000058  #ifdef SQLITE_TEST
000059  int sqlite3_interrupt_count = 0;
000060  #endif
000061  
000062  /*
000063  ** The next global variable is incremented each type the OP_Sort opcode
000064  ** is executed.  The test procedures use this information to make sure that
000065  ** sorting is occurring or not occurring at appropriate times.   This variable
000066  ** has no function other than to help verify the correct operation of the
000067  ** library.
000068  */
000069  #ifdef SQLITE_TEST
000070  int sqlite3_sort_count = 0;
000071  #endif
000072  
000073  /*
000074  ** The next global variable records the size of the largest MEM_Blob
000075  ** or MEM_Str that has been used by a VDBE opcode.  The test procedures
000076  ** use this information to make sure that the zero-blob functionality
000077  ** is working correctly.   This variable has no function other than to
000078  ** help verify the correct operation of the library.
000079  */
000080  #ifdef SQLITE_TEST
000081  int sqlite3_max_blobsize = 0;
000082  static void updateMaxBlobsize(Mem *p){
000083    if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
000084      sqlite3_max_blobsize = p->n;
000085    }
000086  }
000087  #endif
000088  
000089  /*
000090  ** This macro evaluates to true if either the update hook or the preupdate
000091  ** hook are enabled for database connect DB.
000092  */
000093  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
000094  # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
000095  #else
000096  # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
000097  #endif
000098  
000099  /*
000100  ** The next global variable is incremented each time the OP_Found opcode
000101  ** is executed. This is used to test whether or not the foreign key
000102  ** operation implemented using OP_FkIsZero is working. This variable
000103  ** has no function other than to help verify the correct operation of the
000104  ** library.
000105  */
000106  #ifdef SQLITE_TEST
000107  int sqlite3_found_count = 0;
000108  #endif
000109  
000110  /*
000111  ** Test a register to see if it exceeds the current maximum blob size.
000112  ** If it does, record the new maximum blob size.
000113  */
000114  #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
000115  # define UPDATE_MAX_BLOBSIZE(P)  updateMaxBlobsize(P)
000116  #else
000117  # define UPDATE_MAX_BLOBSIZE(P)
000118  #endif
000119  
000120  /*
000121  ** Invoke the VDBE coverage callback, if that callback is defined.  This
000122  ** feature is used for test suite validation only and does not appear an
000123  ** production builds.
000124  **
000125  ** M is an integer, 2 or 3, that indices how many different ways the
000126  ** branch can go.  It is usually 2.  "I" is the direction the branch
000127  ** goes.  0 means falls through.  1 means branch is taken.  2 means the
000128  ** second alternative branch is taken.
000129  **
000130  ** iSrcLine is the source code line (from the __LINE__ macro) that
000131  ** generated the VDBE instruction.  This instrumentation assumes that all
000132  ** source code is in a single file (the amalgamation).  Special values 1
000133  ** and 2 for the iSrcLine parameter mean that this particular branch is
000134  ** always taken or never taken, respectively.
000135  */
000136  #if !defined(SQLITE_VDBE_COVERAGE)
000137  # define VdbeBranchTaken(I,M)
000138  #else
000139  # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
000140    static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
000141      if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
000142        M = iSrcLine;
000143        /* Assert the truth of VdbeCoverageAlwaysTaken() and 
000144        ** VdbeCoverageNeverTaken() */
000145        assert( (M & I)==I );
000146      }else{
000147        if( sqlite3GlobalConfig.xVdbeBranch==0 ) return;  /*NO_TEST*/
000148        sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
000149                                        iSrcLine,I,M);
000150      }
000151    }
000152  #endif
000153  
000154  /*
000155  ** Convert the given register into a string if it isn't one
000156  ** already. Return non-zero if a malloc() fails.
000157  */
000158  #define Stringify(P, enc) \
000159     if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
000160       { goto no_mem; }
000161  
000162  /*
000163  ** An ephemeral string value (signified by the MEM_Ephem flag) contains
000164  ** a pointer to a dynamically allocated string where some other entity
000165  ** is responsible for deallocating that string.  Because the register
000166  ** does not control the string, it might be deleted without the register
000167  ** knowing it.
000168  **
000169  ** This routine converts an ephemeral string into a dynamically allocated
000170  ** string that the register itself controls.  In other words, it
000171  ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
000172  */
000173  #define Deephemeralize(P) \
000174     if( ((P)->flags&MEM_Ephem)!=0 \
000175         && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
000176  
000177  /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
000178  #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
000179  
000180  /*
000181  ** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
000182  ** if we run out of memory.
000183  */
000184  static VdbeCursor *allocateCursor(
000185    Vdbe *p,              /* The virtual machine */
000186    int iCur,             /* Index of the new VdbeCursor */
000187    int nField,           /* Number of fields in the table or index */
000188    int iDb,              /* Database the cursor belongs to, or -1 */
000189    u8 eCurType           /* Type of the new cursor */
000190  ){
000191    /* Find the memory cell that will be used to store the blob of memory
000192    ** required for this VdbeCursor structure. It is convenient to use a 
000193    ** vdbe memory cell to manage the memory allocation required for a
000194    ** VdbeCursor structure for the following reasons:
000195    **
000196    **   * Sometimes cursor numbers are used for a couple of different
000197    **     purposes in a vdbe program. The different uses might require
000198    **     different sized allocations. Memory cells provide growable
000199    **     allocations.
000200    **
000201    **   * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
000202    **     be freed lazily via the sqlite3_release_memory() API. This
000203    **     minimizes the number of malloc calls made by the system.
000204    **
000205    ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
000206    ** the top of the register space.  Cursor 1 is at Mem[p->nMem-1].
000207    ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
000208    */
000209    Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
000210  
000211    int nByte;
000212    VdbeCursor *pCx = 0;
000213    nByte = 
000214        ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 
000215        (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
000216  
000217    assert( iCur>=0 && iCur<p->nCursor );
000218    if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
000219      sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
000220      p->apCsr[iCur] = 0;
000221    }
000222    if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
000223      p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
000224      memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
000225      pCx->eCurType = eCurType;
000226      pCx->iDb = iDb;
000227      pCx->nField = nField;
000228      pCx->aOffset = &pCx->aType[nField];
000229      if( eCurType==CURTYPE_BTREE ){
000230        pCx->uc.pCursor = (BtCursor*)
000231            &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
000232        sqlite3BtreeCursorZero(pCx->uc.pCursor);
000233      }
000234    }
000235    return pCx;
000236  }
000237  
000238  /*
000239  ** Try to convert a value into a numeric representation if we can
000240  ** do so without loss of information.  In other words, if the string
000241  ** looks like a number, convert it into a number.  If it does not
000242  ** look like a number, leave it alone.
000243  **
000244  ** If the bTryForInt flag is true, then extra effort is made to give
000245  ** an integer representation.  Strings that look like floating point
000246  ** values but which have no fractional component (example: '48.00')
000247  ** will have a MEM_Int representation when bTryForInt is true.
000248  **
000249  ** If bTryForInt is false, then if the input string contains a decimal
000250  ** point or exponential notation, the result is only MEM_Real, even
000251  ** if there is an exact integer representation of the quantity.
000252  */
000253  static void applyNumericAffinity(Mem *pRec, int bTryForInt){
000254    double rValue;
000255    i64 iValue;
000256    u8 enc = pRec->enc;
000257    assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
000258    if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
000259    if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
000260      pRec->u.i = iValue;
000261      pRec->flags |= MEM_Int;
000262    }else{
000263      pRec->u.r = rValue;
000264      pRec->flags |= MEM_Real;
000265      if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
000266    }
000267  }
000268  
000269  /*
000270  ** Processing is determine by the affinity parameter:
000271  **
000272  ** SQLITE_AFF_INTEGER:
000273  ** SQLITE_AFF_REAL:
000274  ** SQLITE_AFF_NUMERIC:
000275  **    Try to convert pRec to an integer representation or a 
000276  **    floating-point representation if an integer representation
000277  **    is not possible.  Note that the integer representation is
000278  **    always preferred, even if the affinity is REAL, because
000279  **    an integer representation is more space efficient on disk.
000280  **
000281  ** SQLITE_AFF_TEXT:
000282  **    Convert pRec to a text representation.
000283  **
000284  ** SQLITE_AFF_BLOB:
000285  **    No-op.  pRec is unchanged.
000286  */
000287  static void applyAffinity(
000288    Mem *pRec,          /* The value to apply affinity to */
000289    char affinity,      /* The affinity to be applied */
000290    u8 enc              /* Use this text encoding */
000291  ){
000292    if( affinity>=SQLITE_AFF_NUMERIC ){
000293      assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
000294               || affinity==SQLITE_AFF_NUMERIC );
000295      if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
000296        if( (pRec->flags & MEM_Real)==0 ){
000297          if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
000298        }else{
000299          sqlite3VdbeIntegerAffinity(pRec);
000300        }
000301      }
000302    }else if( affinity==SQLITE_AFF_TEXT ){
000303      /* Only attempt the conversion to TEXT if there is an integer or real
000304      ** representation (blob and NULL do not get converted) but no string
000305      ** representation.  It would be harmless to repeat the conversion if 
000306      ** there is already a string rep, but it is pointless to waste those
000307      ** CPU cycles. */
000308      if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
000309        if( (pRec->flags&(MEM_Real|MEM_Int)) ){
000310          sqlite3VdbeMemStringify(pRec, enc, 1);
000311        }
000312      }
000313      pRec->flags &= ~(MEM_Real|MEM_Int);
000314    }
000315  }
000316  
000317  /*
000318  ** Try to convert the type of a function argument or a result column
000319  ** into a numeric representation.  Use either INTEGER or REAL whichever
000320  ** is appropriate.  But only do the conversion if it is possible without
000321  ** loss of information and return the revised type of the argument.
000322  */
000323  int sqlite3_value_numeric_type(sqlite3_value *pVal){
000324    int eType = sqlite3_value_type(pVal);
000325    if( eType==SQLITE_TEXT ){
000326      Mem *pMem = (Mem*)pVal;
000327      applyNumericAffinity(pMem, 0);
000328      eType = sqlite3_value_type(pVal);
000329    }
000330    return eType;
000331  }
000332  
000333  /*
000334  ** Exported version of applyAffinity(). This one works on sqlite3_value*, 
000335  ** not the internal Mem* type.
000336  */
000337  void sqlite3ValueApplyAffinity(
000338    sqlite3_value *pVal, 
000339    u8 affinity, 
000340    u8 enc
000341  ){
000342    applyAffinity((Mem *)pVal, affinity, enc);
000343  }
000344  
000345  /*
000346  ** pMem currently only holds a string type (or maybe a BLOB that we can
000347  ** interpret as a string if we want to).  Compute its corresponding
000348  ** numeric type, if has one.  Set the pMem->u.r and pMem->u.i fields
000349  ** accordingly.
000350  */
000351  static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
000352    assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
000353    assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
000354    if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
000355      return 0;
000356    }
000357    if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
000358      return MEM_Int;
000359    }
000360    return MEM_Real;
000361  }
000362  
000363  /*
000364  ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
000365  ** none.  
000366  **
000367  ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
000368  ** But it does set pMem->u.r and pMem->u.i appropriately.
000369  */
000370  static u16 numericType(Mem *pMem){
000371    if( pMem->flags & (MEM_Int|MEM_Real) ){
000372      return pMem->flags & (MEM_Int|MEM_Real);
000373    }
000374    if( pMem->flags & (MEM_Str|MEM_Blob) ){
000375      return computeNumericType(pMem);
000376    }
000377    return 0;
000378  }
000379  
000380  #ifdef SQLITE_DEBUG
000381  /*
000382  ** Write a nice string representation of the contents of cell pMem
000383  ** into buffer zBuf, length nBuf.
000384  */
000385  void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
000386    char *zCsr = zBuf;
000387    int f = pMem->flags;
000388  
000389    static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
000390  
000391    if( f&MEM_Blob ){
000392      int i;
000393      char c;
000394      if( f & MEM_Dyn ){
000395        c = 'z';
000396        assert( (f & (MEM_Static|MEM_Ephem))==0 );
000397      }else if( f & MEM_Static ){
000398        c = 't';
000399        assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
000400      }else if( f & MEM_Ephem ){
000401        c = 'e';
000402        assert( (f & (MEM_Static|MEM_Dyn))==0 );
000403      }else{
000404        c = 's';
000405      }
000406  
000407      sqlite3_snprintf(100, zCsr, "%c", c);
000408      zCsr += sqlite3Strlen30(zCsr);
000409      sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
000410      zCsr += sqlite3Strlen30(zCsr);
000411      for(i=0; i<16 && i<pMem->n; i++){
000412        sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
000413        zCsr += sqlite3Strlen30(zCsr);
000414      }
000415      for(i=0; i<16 && i<pMem->n; i++){
000416        char z = pMem->z[i];
000417        if( z<32 || z>126 ) *zCsr++ = '.';
000418        else *zCsr++ = z;
000419      }
000420  
000421      sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
000422      zCsr += sqlite3Strlen30(zCsr);
000423      if( f & MEM_Zero ){
000424        sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
000425        zCsr += sqlite3Strlen30(zCsr);
000426      }
000427      *zCsr = '\0';
000428    }else if( f & MEM_Str ){
000429      int j, k;
000430      zBuf[0] = ' ';
000431      if( f & MEM_Dyn ){
000432        zBuf[1] = 'z';
000433        assert( (f & (MEM_Static|MEM_Ephem))==0 );
000434      }else if( f & MEM_Static ){
000435        zBuf[1] = 't';
000436        assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
000437      }else if( f & MEM_Ephem ){
000438        zBuf[1] = 'e';
000439        assert( (f & (MEM_Static|MEM_Dyn))==0 );
000440      }else{
000441        zBuf[1] = 's';
000442      }
000443      k = 2;
000444      sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
000445      k += sqlite3Strlen30(&zBuf[k]);
000446      zBuf[k++] = '[';
000447      for(j=0; j<15 && j<pMem->n; j++){
000448        u8 c = pMem->z[j];
000449        if( c>=0x20 && c<0x7f ){
000450          zBuf[k++] = c;
000451        }else{
000452          zBuf[k++] = '.';
000453        }
000454      }
000455      zBuf[k++] = ']';
000456      sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
000457      k += sqlite3Strlen30(&zBuf[k]);
000458      zBuf[k++] = 0;
000459    }
000460  }
000461  #endif
000462  
000463  #ifdef SQLITE_DEBUG
000464  /*
000465  ** Print the value of a register for tracing purposes:
000466  */
000467  static void memTracePrint(Mem *p){
000468    if( p->flags & MEM_Undefined ){
000469      printf(" undefined");
000470    }else if( p->flags & MEM_Null ){
000471      printf(" NULL");
000472    }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
000473      printf(" si:%lld", p->u.i);
000474    }else if( p->flags & MEM_Int ){
000475      printf(" i:%lld", p->u.i);
000476  #ifndef SQLITE_OMIT_FLOATING_POINT
000477    }else if( p->flags & MEM_Real ){
000478      printf(" r:%g", p->u.r);
000479  #endif
000480    }else if( p->flags & MEM_RowSet ){
000481      printf(" (rowset)");
000482    }else{
000483      char zBuf[200];
000484      sqlite3VdbeMemPrettyPrint(p, zBuf);
000485      printf(" %s", zBuf);
000486    }
000487    if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
000488  }
000489  static void registerTrace(int iReg, Mem *p){
000490    printf("REG[%d] = ", iReg);
000491    memTracePrint(p);
000492    printf("\n");
000493  }
000494  #endif
000495  
000496  #ifdef SQLITE_DEBUG
000497  #  define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
000498  #else
000499  #  define REGISTER_TRACE(R,M)
000500  #endif
000501  
000502  
000503  #ifdef VDBE_PROFILE
000504  
000505  /* 
000506  ** hwtime.h contains inline assembler code for implementing 
000507  ** high-performance timing routines.
000508  */
000509  #include "hwtime.h"
000510  
000511  #endif
000512  
000513  #ifndef NDEBUG
000514  /*
000515  ** This function is only called from within an assert() expression. It
000516  ** checks that the sqlite3.nTransaction variable is correctly set to
000517  ** the number of non-transaction savepoints currently in the 
000518  ** linked list starting at sqlite3.pSavepoint.
000519  ** 
000520  ** Usage:
000521  **
000522  **     assert( checkSavepointCount(db) );
000523  */
000524  static int checkSavepointCount(sqlite3 *db){
000525    int n = 0;
000526    Savepoint *p;
000527    for(p=db->pSavepoint; p; p=p->pNext) n++;
000528    assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
000529    return 1;
000530  }
000531  #endif
000532  
000533  /*
000534  ** Return the register of pOp->p2 after first preparing it to be
000535  ** overwritten with an integer value.
000536  */
000537  static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
000538    sqlite3VdbeMemSetNull(pOut);
000539    pOut->flags = MEM_Int;
000540    return pOut;
000541  }
000542  static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
000543    Mem *pOut;
000544    assert( pOp->p2>0 );
000545    assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000546    pOut = &p->aMem[pOp->p2];
000547    memAboutToChange(p, pOut);
000548    if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
000549      return out2PrereleaseWithClear(pOut);
000550    }else{
000551      pOut->flags = MEM_Int;
000552      return pOut;
000553    }
000554  }
000555  
000556  
000557  /*
000558  ** Execute as much of a VDBE program as we can.
000559  ** This is the core of sqlite3_step().  
000560  */
000561  int sqlite3VdbeExec(
000562    Vdbe *p                    /* The VDBE */
000563  ){
000564    Op *aOp = p->aOp;          /* Copy of p->aOp */
000565    Op *pOp = aOp;             /* Current operation */
000566  #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
000567    Op *pOrigOp;               /* Value of pOp at the top of the loop */
000568  #endif
000569  #ifdef SQLITE_DEBUG
000570    int nExtraDelete = 0;      /* Verifies FORDELETE and AUXDELETE flags */
000571  #endif
000572    int rc = SQLITE_OK;        /* Value to return */
000573    sqlite3 *db = p->db;       /* The database */
000574    u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
000575    u8 encoding = ENC(db);     /* The database encoding */
000576    int iCompare = 0;          /* Result of last comparison */
000577    unsigned nVmStep = 0;      /* Number of virtual machine steps */
000578  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000579    unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
000580  #endif
000581    Mem *aMem = p->aMem;       /* Copy of p->aMem */
000582    Mem *pIn1 = 0;             /* 1st input operand */
000583    Mem *pIn2 = 0;             /* 2nd input operand */
000584    Mem *pIn3 = 0;             /* 3rd input operand */
000585    Mem *pOut = 0;             /* Output operand */
000586    int *aPermute = 0;         /* Permutation of columns for OP_Compare */
000587    i64 lastRowid = db->lastRowid;  /* Saved value of the last insert ROWID */
000588  #ifdef VDBE_PROFILE
000589    u64 start;                 /* CPU clock count at start of opcode */
000590  #endif
000591    /*** INSERT STACK UNION HERE ***/
000592  
000593    assert( p->magic==VDBE_MAGIC_RUN );  /* sqlite3_step() verifies this */
000594    sqlite3VdbeEnter(p);
000595    if( p->rc==SQLITE_NOMEM ){
000596      /* This happens if a malloc() inside a call to sqlite3_column_text() or
000597      ** sqlite3_column_text16() failed.  */
000598      goto no_mem;
000599    }
000600    assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
000601    assert( p->bIsReader || p->readOnly!=0 );
000602    p->rc = SQLITE_OK;
000603    p->iCurrentTime = 0;
000604    assert( p->explain==0 );
000605    p->pResultSet = 0;
000606    db->busyHandler.nBusy = 0;
000607    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
000608    sqlite3VdbeIOTraceSql(p);
000609  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000610    if( db->xProgress ){
000611      u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
000612      assert( 0 < db->nProgressOps );
000613      nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
000614    }
000615  #endif
000616  #ifdef SQLITE_DEBUG
000617    sqlite3BeginBenignMalloc();
000618    if( p->pc==0
000619     && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
000620    ){
000621      int i;
000622      int once = 1;
000623      sqlite3VdbePrintSql(p);
000624      if( p->db->flags & SQLITE_VdbeListing ){
000625        printf("VDBE Program Listing:\n");
000626        for(i=0; i<p->nOp; i++){
000627          sqlite3VdbePrintOp(stdout, i, &aOp[i]);
000628        }
000629      }
000630      if( p->db->flags & SQLITE_VdbeEQP ){
000631        for(i=0; i<p->nOp; i++){
000632          if( aOp[i].opcode==OP_Explain ){
000633            if( once ) printf("VDBE Query Plan:\n");
000634            printf("%s\n", aOp[i].p4.z);
000635            once = 0;
000636          }
000637        }
000638      }
000639      if( p->db->flags & SQLITE_VdbeTrace )  printf("VDBE Trace:\n");
000640    }
000641    sqlite3EndBenignMalloc();
000642  #endif
000643    for(pOp=&aOp[p->pc]; 1; pOp++){
000644      /* Errors are detected by individual opcodes, with an immediate
000645      ** jumps to abort_due_to_error. */
000646      assert( rc==SQLITE_OK );
000647  
000648      assert( pOp>=aOp && pOp<&aOp[p->nOp]);
000649  #ifdef VDBE_PROFILE
000650      start = sqlite3Hwtime();
000651  #endif
000652      nVmStep++;
000653  #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
000654      if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
000655  #endif
000656  
000657      /* Only allow tracing if SQLITE_DEBUG is defined.
000658      */
000659  #ifdef SQLITE_DEBUG
000660      if( db->flags & SQLITE_VdbeTrace ){
000661        sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
000662      }
000663  #endif
000664        
000665  
000666      /* Check to see if we need to simulate an interrupt.  This only happens
000667      ** if we have a special test build.
000668      */
000669  #ifdef SQLITE_TEST
000670      if( sqlite3_interrupt_count>0 ){
000671        sqlite3_interrupt_count--;
000672        if( sqlite3_interrupt_count==0 ){
000673          sqlite3_interrupt(db);
000674        }
000675      }
000676  #endif
000677  
000678      /* Sanity checking on other operands */
000679  #ifdef SQLITE_DEBUG
000680      {
000681        u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
000682        if( (opProperty & OPFLG_IN1)!=0 ){
000683          assert( pOp->p1>0 );
000684          assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
000685          assert( memIsValid(&aMem[pOp->p1]) );
000686          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
000687          REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
000688        }
000689        if( (opProperty & OPFLG_IN2)!=0 ){
000690          assert( pOp->p2>0 );
000691          assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000692          assert( memIsValid(&aMem[pOp->p2]) );
000693          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
000694          REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
000695        }
000696        if( (opProperty & OPFLG_IN3)!=0 ){
000697          assert( pOp->p3>0 );
000698          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
000699          assert( memIsValid(&aMem[pOp->p3]) );
000700          assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
000701          REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
000702        }
000703        if( (opProperty & OPFLG_OUT2)!=0 ){
000704          assert( pOp->p2>0 );
000705          assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
000706          memAboutToChange(p, &aMem[pOp->p2]);
000707        }
000708        if( (opProperty & OPFLG_OUT3)!=0 ){
000709          assert( pOp->p3>0 );
000710          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
000711          memAboutToChange(p, &aMem[pOp->p3]);
000712        }
000713      }
000714  #endif
000715  #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
000716      pOrigOp = pOp;
000717  #endif
000718    
000719      switch( pOp->opcode ){
000720  
000721  /*****************************************************************************
000722  ** What follows is a massive switch statement where each case implements a
000723  ** separate instruction in the virtual machine.  If we follow the usual
000724  ** indentation conventions, each case should be indented by 6 spaces.  But
000725  ** that is a lot of wasted space on the left margin.  So the code within
000726  ** the switch statement will break with convention and be flush-left. Another
000727  ** big comment (similar to this one) will mark the point in the code where
000728  ** we transition back to normal indentation.
000729  **
000730  ** The formatting of each case is important.  The makefile for SQLite
000731  ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
000732  ** file looking for lines that begin with "case OP_".  The opcodes.h files
000733  ** will be filled with #defines that give unique integer values to each
000734  ** opcode and the opcodes.c file is filled with an array of strings where
000735  ** each string is the symbolic name for the corresponding opcode.  If the
000736  ** case statement is followed by a comment of the form "/# same as ... #/"
000737  ** that comment is used to determine the particular value of the opcode.
000738  **
000739  ** Other keywords in the comment that follows each case are used to
000740  ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
000741  ** Keywords include: in1, in2, in3, out2, out3.  See
000742  ** the mkopcodeh.awk script for additional information.
000743  **
000744  ** Documentation about VDBE opcodes is generated by scanning this file
000745  ** for lines of that contain "Opcode:".  That line and all subsequent
000746  ** comment lines are used in the generation of the opcode.html documentation
000747  ** file.
000748  **
000749  ** SUMMARY:
000750  **
000751  **     Formatting is important to scripts that scan this file.
000752  **     Do not deviate from the formatting style currently in use.
000753  **
000754  *****************************************************************************/
000755  
000756  /* Opcode:  Goto * P2 * * *
000757  **
000758  ** An unconditional jump to address P2.
000759  ** The next instruction executed will be 
000760  ** the one at index P2 from the beginning of
000761  ** the program.
000762  **
000763  ** The P1 parameter is not actually used by this opcode.  However, it
000764  ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
000765  ** that this Goto is the bottom of a loop and that the lines from P2 down
000766  ** to the current line should be indented for EXPLAIN output.
000767  */
000768  case OP_Goto: {             /* jump */
000769  jump_to_p2_and_check_for_interrupt:
000770    pOp = &aOp[pOp->p2 - 1];
000771  
000772    /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
000773    ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
000774    ** completion.  Check to see if sqlite3_interrupt() has been called
000775    ** or if the progress callback needs to be invoked. 
000776    **
000777    ** This code uses unstructured "goto" statements and does not look clean.
000778    ** But that is not due to sloppy coding habits. The code is written this
000779    ** way for performance, to avoid having to run the interrupt and progress
000780    ** checks on every opcode.  This helps sqlite3_step() to run about 1.5%
000781    ** faster according to "valgrind --tool=cachegrind" */
000782  check_for_interrupt:
000783    if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
000784  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
000785    /* Call the progress callback if it is configured and the required number
000786    ** of VDBE ops have been executed (either since this invocation of
000787    ** sqlite3VdbeExec() or since last time the progress callback was called).
000788    ** If the progress callback returns non-zero, exit the virtual machine with
000789    ** a return code SQLITE_ABORT.
000790    */
000791    if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
000792      assert( db->nProgressOps!=0 );
000793      nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
000794      if( db->xProgress(db->pProgressArg) ){
000795        rc = SQLITE_INTERRUPT;
000796        goto abort_due_to_error;
000797      }
000798    }
000799  #endif
000800    
000801    break;
000802  }
000803  
000804  /* Opcode:  Gosub P1 P2 * * *
000805  **
000806  ** Write the current address onto register P1
000807  ** and then jump to address P2.
000808  */
000809  case OP_Gosub: {            /* jump */
000810    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
000811    pIn1 = &aMem[pOp->p1];
000812    assert( VdbeMemDynamic(pIn1)==0 );
000813    memAboutToChange(p, pIn1);
000814    pIn1->flags = MEM_Int;
000815    pIn1->u.i = (int)(pOp-aOp);
000816    REGISTER_TRACE(pOp->p1, pIn1);
000817  
000818    /* Most jump operations do a goto to this spot in order to update
000819    ** the pOp pointer. */
000820  jump_to_p2:
000821    pOp = &aOp[pOp->p2 - 1];
000822    break;
000823  }
000824  
000825  /* Opcode:  Return P1 * * * *
000826  **
000827  ** Jump to the next instruction after the address in register P1.  After
000828  ** the jump, register P1 becomes undefined.
000829  */
000830  case OP_Return: {           /* in1 */
000831    pIn1 = &aMem[pOp->p1];
000832    assert( pIn1->flags==MEM_Int );
000833    pOp = &aOp[pIn1->u.i];
000834    pIn1->flags = MEM_Undefined;
000835    break;
000836  }
000837  
000838  /* Opcode: InitCoroutine P1 P2 P3 * *
000839  **
000840  ** Set up register P1 so that it will Yield to the coroutine
000841  ** located at address P3.
000842  **
000843  ** If P2!=0 then the coroutine implementation immediately follows
000844  ** this opcode.  So jump over the coroutine implementation to
000845  ** address P2.
000846  **
000847  ** See also: EndCoroutine
000848  */
000849  case OP_InitCoroutine: {     /* jump */
000850    assert( pOp->p1>0 &&  pOp->p1<=(p->nMem+1 - p->nCursor) );
000851    assert( pOp->p2>=0 && pOp->p2<p->nOp );
000852    assert( pOp->p3>=0 && pOp->p3<p->nOp );
000853    pOut = &aMem[pOp->p1];
000854    assert( !VdbeMemDynamic(pOut) );
000855    pOut->u.i = pOp->p3 - 1;
000856    pOut->flags = MEM_Int;
000857    if( pOp->p2 ) goto jump_to_p2;
000858    break;
000859  }
000860  
000861  /* Opcode:  EndCoroutine P1 * * * *
000862  **
000863  ** The instruction at the address in register P1 is a Yield.
000864  ** Jump to the P2 parameter of that Yield.
000865  ** After the jump, register P1 becomes undefined.
000866  **
000867  ** See also: InitCoroutine
000868  */
000869  case OP_EndCoroutine: {           /* in1 */
000870    VdbeOp *pCaller;
000871    pIn1 = &aMem[pOp->p1];
000872    assert( pIn1->flags==MEM_Int );
000873    assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
000874    pCaller = &aOp[pIn1->u.i];
000875    assert( pCaller->opcode==OP_Yield );
000876    assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
000877    pOp = &aOp[pCaller->p2 - 1];
000878    pIn1->flags = MEM_Undefined;
000879    break;
000880  }
000881  
000882  /* Opcode:  Yield P1 P2 * * *
000883  **
000884  ** Swap the program counter with the value in register P1.  This
000885  ** has the effect of yielding to a coroutine.
000886  **
000887  ** If the coroutine that is launched by this instruction ends with
000888  ** Yield or Return then continue to the next instruction.  But if
000889  ** the coroutine launched by this instruction ends with
000890  ** EndCoroutine, then jump to P2 rather than continuing with the
000891  ** next instruction.
000892  **
000893  ** See also: InitCoroutine
000894  */
000895  case OP_Yield: {            /* in1, jump */
000896    int pcDest;
000897    pIn1 = &aMem[pOp->p1];
000898    assert( VdbeMemDynamic(pIn1)==0 );
000899    pIn1->flags = MEM_Int;
000900    pcDest = (int)pIn1->u.i;
000901    pIn1->u.i = (int)(pOp - aOp);
000902    REGISTER_TRACE(pOp->p1, pIn1);
000903    pOp = &aOp[pcDest];
000904    break;
000905  }
000906  
000907  /* Opcode:  HaltIfNull  P1 P2 P3 P4 P5
000908  ** Synopsis: if r[P3]=null halt
000909  **
000910  ** Check the value in register P3.  If it is NULL then Halt using
000911  ** parameter P1, P2, and P4 as if this were a Halt instruction.  If the
000912  ** value in register P3 is not NULL, then this routine is a no-op.
000913  ** The P5 parameter should be 1.
000914  */
000915  case OP_HaltIfNull: {      /* in3 */
000916    pIn3 = &aMem[pOp->p3];
000917    if( (pIn3->flags & MEM_Null)==0 ) break;
000918    /* Fall through into OP_Halt */
000919  }
000920  
000921  /* Opcode:  Halt P1 P2 * P4 P5
000922  **
000923  ** Exit immediately.  All open cursors, etc are closed
000924  ** automatically.
000925  **
000926  ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
000927  ** or sqlite3_finalize().  For a normal halt, this should be SQLITE_OK (0).
000928  ** For errors, it can be some other value.  If P1!=0 then P2 will determine
000929  ** whether or not to rollback the current transaction.  Do not rollback
000930  ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback.  If P2==OE_Abort,
000931  ** then back out all changes that have occurred during this execution of the
000932  ** VDBE, but do not rollback the transaction. 
000933  **
000934  ** If P4 is not null then it is an error message string.
000935  **
000936  ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
000937  **
000938  **    0:  (no change)
000939  **    1:  NOT NULL contraint failed: P4
000940  **    2:  UNIQUE constraint failed: P4
000941  **    3:  CHECK constraint failed: P4
000942  **    4:  FOREIGN KEY constraint failed: P4
000943  **
000944  ** If P5 is not zero and P4 is NULL, then everything after the ":" is
000945  ** omitted.
000946  **
000947  ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
000948  ** every program.  So a jump past the last instruction of the program
000949  ** is the same as executing Halt.
000950  */
000951  case OP_Halt: {
000952    VdbeFrame *pFrame;
000953    int pcx;
000954  
000955    pcx = (int)(pOp - aOp);
000956    if( pOp->p1==SQLITE_OK && p->pFrame ){
000957      /* Halt the sub-program. Return control to the parent frame. */
000958      pFrame = p->pFrame;
000959      p->pFrame = pFrame->pParent;
000960      p->nFrame--;
000961      sqlite3VdbeSetChanges(db, p->nChange);
000962      pcx = sqlite3VdbeFrameRestore(pFrame);
000963      lastRowid = db->lastRowid;
000964      if( pOp->p2==OE_Ignore ){
000965        /* Instruction pcx is the OP_Program that invoked the sub-program 
000966        ** currently being halted. If the p2 instruction of this OP_Halt
000967        ** instruction is set to OE_Ignore, then the sub-program is throwing
000968        ** an IGNORE exception. In this case jump to the address specified
000969        ** as the p2 of the calling OP_Program.  */
000970        pcx = p->aOp[pcx].p2-1;
000971      }
000972      aOp = p->aOp;
000973      aMem = p->aMem;
000974      pOp = &aOp[pcx];
000975      break;
000976    }
000977    p->rc = pOp->p1;
000978    p->errorAction = (u8)pOp->p2;
000979    p->pc = pcx;
000980    assert( pOp->p5<=4 );
000981    if( p->rc ){
000982      if( pOp->p5 ){
000983        static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
000984                                               "FOREIGN KEY" };
000985        testcase( pOp->p5==1 );
000986        testcase( pOp->p5==2 );
000987        testcase( pOp->p5==3 );
000988        testcase( pOp->p5==4 );
000989        sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
000990        if( pOp->p4.z ){
000991          p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
000992        }
000993      }else{
000994        sqlite3VdbeError(p, "%s", pOp->p4.z);
000995      }
000996      sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
000997    }
000998    rc = sqlite3VdbeHalt(p);
000999    assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
001000    if( rc==SQLITE_BUSY ){
001001      p->rc = SQLITE_BUSY;
001002    }else{
001003      assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
001004      assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
001005      rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
001006    }
001007    goto vdbe_return;
001008  }
001009  
001010  /* Opcode: Integer P1 P2 * * *
001011  ** Synopsis: r[P2]=P1
001012  **
001013  ** The 32-bit integer value P1 is written into register P2.
001014  */
001015  case OP_Integer: {         /* out2 */
001016    pOut = out2Prerelease(p, pOp);
001017    pOut->u.i = pOp->p1;
001018    break;
001019  }
001020  
001021  /* Opcode: Int64 * P2 * P4 *
001022  ** Synopsis: r[P2]=P4
001023  **
001024  ** P4 is a pointer to a 64-bit integer value.
001025  ** Write that value into register P2.
001026  */
001027  case OP_Int64: {           /* out2 */
001028    pOut = out2Prerelease(p, pOp);
001029    assert( pOp->p4.pI64!=0 );
001030    pOut->u.i = *pOp->p4.pI64;
001031    break;
001032  }
001033  
001034  #ifndef SQLITE_OMIT_FLOATING_POINT
001035  /* Opcode: Real * P2 * P4 *
001036  ** Synopsis: r[P2]=P4
001037  **
001038  ** P4 is a pointer to a 64-bit floating point value.
001039  ** Write that value into register P2.
001040  */
001041  case OP_Real: {            /* same as TK_FLOAT, out2 */
001042    pOut = out2Prerelease(p, pOp);
001043    pOut->flags = MEM_Real;
001044    assert( !sqlite3IsNaN(*pOp->p4.pReal) );
001045    pOut->u.r = *pOp->p4.pReal;
001046    break;
001047  }
001048  #endif
001049  
001050  /* Opcode: String8 * P2 * P4 *
001051  ** Synopsis: r[P2]='P4'
001052  **
001053  ** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
001054  ** into a String opcode before it is executed for the first time.  During
001055  ** this transformation, the length of string P4 is computed and stored
001056  ** as the P1 parameter.
001057  */
001058  case OP_String8: {         /* same as TK_STRING, out2 */
001059    assert( pOp->p4.z!=0 );
001060    pOut = out2Prerelease(p, pOp);
001061    pOp->opcode = OP_String;
001062    pOp->p1 = sqlite3Strlen30(pOp->p4.z);
001063  
001064  #ifndef SQLITE_OMIT_UTF16
001065    if( encoding!=SQLITE_UTF8 ){
001066      rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
001067      assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
001068      if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
001069      assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
001070      assert( VdbeMemDynamic(pOut)==0 );
001071      pOut->szMalloc = 0;
001072      pOut->flags |= MEM_Static;
001073      if( pOp->p4type==P4_DYNAMIC ){
001074        sqlite3DbFree(db, pOp->p4.z);
001075      }
001076      pOp->p4type = P4_DYNAMIC;
001077      pOp->p4.z = pOut->z;
001078      pOp->p1 = pOut->n;
001079    }
001080    testcase( rc==SQLITE_TOOBIG );
001081  #endif
001082    if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
001083      goto too_big;
001084    }
001085    assert( rc==SQLITE_OK );
001086    /* Fall through to the next case, OP_String */
001087  }
001088    
001089  /* Opcode: String P1 P2 P3 P4 P5
001090  ** Synopsis: r[P2]='P4' (len=P1)
001091  **
001092  ** The string value P4 of length P1 (bytes) is stored in register P2.
001093  **
001094  ** If P3 is not zero and the content of register P3 is equal to P5, then
001095  ** the datatype of the register P2 is converted to BLOB.  The content is
001096  ** the same sequence of bytes, it is merely interpreted as a BLOB instead
001097  ** of a string, as if it had been CAST.  In other words:
001098  **
001099  ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
001100  */
001101  case OP_String: {          /* out2 */
001102    assert( pOp->p4.z!=0 );
001103    pOut = out2Prerelease(p, pOp);
001104    pOut->flags = MEM_Str|MEM_Static|MEM_Term;
001105    pOut->z = pOp->p4.z;
001106    pOut->n = pOp->p1;
001107    pOut->enc = encoding;
001108    UPDATE_MAX_BLOBSIZE(pOut);
001109  #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
001110    if( pOp->p3>0 ){
001111      assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
001112      pIn3 = &aMem[pOp->p3];
001113      assert( pIn3->flags & MEM_Int );
001114      if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
001115    }
001116  #endif
001117    break;
001118  }
001119  
001120  /* Opcode: Null P1 P2 P3 * *
001121  ** Synopsis: r[P2..P3]=NULL
001122  **
001123  ** Write a NULL into registers P2.  If P3 greater than P2, then also write
001124  ** NULL into register P3 and every register in between P2 and P3.  If P3
001125  ** is less than P2 (typically P3 is zero) then only register P2 is
001126  ** set to NULL.
001127  **
001128  ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
001129  ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
001130  ** OP_Ne or OP_Eq.
001131  */
001132  case OP_Null: {           /* out2 */
001133    int cnt;
001134    u16 nullFlag;
001135    pOut = out2Prerelease(p, pOp);
001136    cnt = pOp->p3-pOp->p2;
001137    assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
001138    pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
001139    pOut->n = 0;
001140    while( cnt>0 ){
001141      pOut++;
001142      memAboutToChange(p, pOut);
001143      sqlite3VdbeMemSetNull(pOut);
001144      pOut->flags = nullFlag;
001145      pOut->n = 0;
001146      cnt--;
001147    }
001148    break;
001149  }
001150  
001151  /* Opcode: SoftNull P1 * * * *
001152  ** Synopsis: r[P1]=NULL
001153  **
001154  ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
001155  ** instruction, but do not free any string or blob memory associated with
001156  ** the register, so that if the value was a string or blob that was
001157  ** previously copied using OP_SCopy, the copies will continue to be valid.
001158  */
001159  case OP_SoftNull: {
001160    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
001161    pOut = &aMem[pOp->p1];
001162    pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
001163    break;
001164  }
001165  
001166  /* Opcode: Blob P1 P2 * P4 *
001167  ** Synopsis: r[P2]=P4 (len=P1)
001168  **
001169  ** P4 points to a blob of data P1 bytes long.  Store this
001170  ** blob in register P2.
001171  */
001172  case OP_Blob: {                /* out2 */
001173    assert( pOp->p1 <= SQLITE_MAX_LENGTH );
001174    pOut = out2Prerelease(p, pOp);
001175    sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
001176    pOut->enc = encoding;
001177    UPDATE_MAX_BLOBSIZE(pOut);
001178    break;
001179  }
001180  
001181  /* Opcode: Variable P1 P2 * P4 *
001182  ** Synopsis: r[P2]=parameter(P1,P4)
001183  **
001184  ** Transfer the values of bound parameter P1 into register P2
001185  **
001186  ** If the parameter is named, then its name appears in P4.
001187  ** The P4 value is used by sqlite3_bind_parameter_name().
001188  */
001189  case OP_Variable: {            /* out2 */
001190    Mem *pVar;       /* Value being transferred */
001191  
001192    assert( pOp->p1>0 && pOp->p1<=p->nVar );
001193    assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
001194    pVar = &p->aVar[pOp->p1 - 1];
001195    if( sqlite3VdbeMemTooBig(pVar) ){
001196      goto too_big;
001197    }
001198    pOut = out2Prerelease(p, pOp);
001199    sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
001200    UPDATE_MAX_BLOBSIZE(pOut);
001201    break;
001202  }
001203  
001204  /* Opcode: Move P1 P2 P3 * *
001205  ** Synopsis: r[P2@P3]=r[P1@P3]
001206  **
001207  ** Move the P3 values in register P1..P1+P3-1 over into
001208  ** registers P2..P2+P3-1.  Registers P1..P1+P3-1 are
001209  ** left holding a NULL.  It is an error for register ranges
001210  ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.  It is an error
001211  ** for P3 to be less than 1.
001212  */
001213  case OP_Move: {
001214    int n;           /* Number of registers left to copy */
001215    int p1;          /* Register to copy from */
001216    int p2;          /* Register to copy to */
001217  
001218    n = pOp->p3;
001219    p1 = pOp->p1;
001220    p2 = pOp->p2;
001221    assert( n>0 && p1>0 && p2>0 );
001222    assert( p1+n<=p2 || p2+n<=p1 );
001223  
001224    pIn1 = &aMem[p1];
001225    pOut = &aMem[p2];
001226    do{
001227      assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
001228      assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
001229      assert( memIsValid(pIn1) );
001230      memAboutToChange(p, pOut);
001231      sqlite3VdbeMemMove(pOut, pIn1);
001232  #ifdef SQLITE_DEBUG
001233      if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
001234        pOut->pScopyFrom += pOp->p2 - p1;
001235      }
001236  #endif
001237      Deephemeralize(pOut);
001238      REGISTER_TRACE(p2++, pOut);
001239      pIn1++;
001240      pOut++;
001241    }while( --n );
001242    break;
001243  }
001244  
001245  /* Opcode: Copy P1 P2 P3 * *
001246  ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
001247  **
001248  ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
001249  **
001250  ** This instruction makes a deep copy of the value.  A duplicate
001251  ** is made of any string or blob constant.  See also OP_SCopy.
001252  */
001253  case OP_Copy: {
001254    int n;
001255  
001256    n = pOp->p3;
001257    pIn1 = &aMem[pOp->p1];
001258    pOut = &aMem[pOp->p2];
001259    assert( pOut!=pIn1 );
001260    while( 1 ){
001261      sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
001262      Deephemeralize(pOut);
001263  #ifdef SQLITE_DEBUG
001264      pOut->pScopyFrom = 0;
001265  #endif
001266      REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
001267      if( (n--)==0 ) break;
001268      pOut++;
001269      pIn1++;
001270    }
001271    break;
001272  }
001273  
001274  /* Opcode: SCopy P1 P2 * * *
001275  ** Synopsis: r[P2]=r[P1]
001276  **
001277  ** Make a shallow copy of register P1 into register P2.
001278  **
001279  ** This instruction makes a shallow copy of the value.  If the value
001280  ** is a string or blob, then the copy is only a pointer to the
001281  ** original and hence if the original changes so will the copy.
001282  ** Worse, if the original is deallocated, the copy becomes invalid.
001283  ** Thus the program must guarantee that the original will not change
001284  ** during the lifetime of the copy.  Use OP_Copy to make a complete
001285  ** copy.
001286  */
001287  case OP_SCopy: {            /* out2 */
001288    pIn1 = &aMem[pOp->p1];
001289    pOut = &aMem[pOp->p2];
001290    assert( pOut!=pIn1 );
001291    sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
001292  #ifdef SQLITE_DEBUG
001293    if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
001294  #endif
001295    break;
001296  }
001297  
001298  /* Opcode: IntCopy P1 P2 * * *
001299  ** Synopsis: r[P2]=r[P1]
001300  **
001301  ** Transfer the integer value held in register P1 into register P2.
001302  **
001303  ** This is an optimized version of SCopy that works only for integer
001304  ** values.
001305  */
001306  case OP_IntCopy: {            /* out2 */
001307    pIn1 = &aMem[pOp->p1];
001308    assert( (pIn1->flags & MEM_Int)!=0 );
001309    pOut = &aMem[pOp->p2];
001310    sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
001311    break;
001312  }
001313  
001314  /* Opcode: ResultRow P1 P2 * * *
001315  ** Synopsis: output=r[P1@P2]
001316  **
001317  ** The registers P1 through P1+P2-1 contain a single row of
001318  ** results. This opcode causes the sqlite3_step() call to terminate
001319  ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
001320  ** structure to provide access to the r(P1)..r(P1+P2-1) values as
001321  ** the result row.
001322  */
001323  case OP_ResultRow: {
001324    Mem *pMem;
001325    int i;
001326    assert( p->nResColumn==pOp->p2 );
001327    assert( pOp->p1>0 );
001328    assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
001329  
001330  #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
001331    /* Run the progress counter just before returning.
001332    */
001333    if( db->xProgress!=0
001334     && nVmStep>=nProgressLimit
001335     && db->xProgress(db->pProgressArg)!=0
001336    ){
001337      rc = SQLITE_INTERRUPT;
001338      goto abort_due_to_error;
001339    }
001340  #endif
001341  
001342    /* If this statement has violated immediate foreign key constraints, do
001343    ** not return the number of rows modified. And do not RELEASE the statement
001344    ** transaction. It needs to be rolled back.  */
001345    if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
001346      assert( db->flags&SQLITE_CountRows );
001347      assert( p->usesStmtJournal );
001348      goto abort_due_to_error;
001349    }
001350  
001351    /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then 
001352    ** DML statements invoke this opcode to return the number of rows 
001353    ** modified to the user. This is the only way that a VM that
001354    ** opens a statement transaction may invoke this opcode.
001355    **
001356    ** In case this is such a statement, close any statement transaction
001357    ** opened by this VM before returning control to the user. This is to
001358    ** ensure that statement-transactions are always nested, not overlapping.
001359    ** If the open statement-transaction is not closed here, then the user
001360    ** may step another VM that opens its own statement transaction. This
001361    ** may lead to overlapping statement transactions.
001362    **
001363    ** The statement transaction is never a top-level transaction.  Hence
001364    ** the RELEASE call below can never fail.
001365    */
001366    assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
001367    rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
001368    assert( rc==SQLITE_OK );
001369  
001370    /* Invalidate all ephemeral cursor row caches */
001371    p->cacheCtr = (p->cacheCtr + 2)|1;
001372  
001373    /* Make sure the results of the current row are \000 terminated
001374    ** and have an assigned type.  The results are de-ephemeralized as
001375    ** a side effect.
001376    */
001377    pMem = p->pResultSet = &aMem[pOp->p1];
001378    for(i=0; i<pOp->p2; i++){
001379      assert( memIsValid(&pMem[i]) );
001380      Deephemeralize(&pMem[i]);
001381      assert( (pMem[i].flags & MEM_Ephem)==0
001382              || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
001383      sqlite3VdbeMemNulTerminate(&pMem[i]);
001384      REGISTER_TRACE(pOp->p1+i, &pMem[i]);
001385    }
001386    if( db->mallocFailed ) goto no_mem;
001387  
001388    if( db->mTrace & SQLITE_TRACE_ROW ){
001389      db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
001390    }
001391  
001392    /* Return SQLITE_ROW
001393    */
001394    p->pc = (int)(pOp - aOp) + 1;
001395    rc = SQLITE_ROW;
001396    goto vdbe_return;
001397  }
001398  
001399  /* Opcode: Concat P1 P2 P3 * *
001400  ** Synopsis: r[P3]=r[P2]+r[P1]
001401  **
001402  ** Add the text in register P1 onto the end of the text in
001403  ** register P2 and store the result in register P3.
001404  ** If either the P1 or P2 text are NULL then store NULL in P3.
001405  **
001406  **   P3 = P2 || P1
001407  **
001408  ** It is illegal for P1 and P3 to be the same register. Sometimes,
001409  ** if P3 is the same register as P2, the implementation is able
001410  ** to avoid a memcpy().
001411  */
001412  case OP_Concat: {           /* same as TK_CONCAT, in1, in2, out3 */
001413    i64 nByte;
001414  
001415    pIn1 = &aMem[pOp->p1];
001416    pIn2 = &aMem[pOp->p2];
001417    pOut = &aMem[pOp->p3];
001418    assert( pIn1!=pOut );
001419    if( (pIn1->flags | pIn2->flags) & MEM_Null ){
001420      sqlite3VdbeMemSetNull(pOut);
001421      break;
001422    }
001423    if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
001424    Stringify(pIn1, encoding);
001425    Stringify(pIn2, encoding);
001426    nByte = pIn1->n + pIn2->n;
001427    if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
001428      goto too_big;
001429    }
001430    if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
001431      goto no_mem;
001432    }
001433    MemSetTypeFlag(pOut, MEM_Str);
001434    if( pOut!=pIn2 ){
001435      memcpy(pOut->z, pIn2->z, pIn2->n);
001436    }
001437    memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
001438    pOut->z[nByte]=0;
001439    pOut->z[nByte+1] = 0;
001440    pOut->flags |= MEM_Term;
001441    pOut->n = (int)nByte;
001442    pOut->enc = encoding;
001443    UPDATE_MAX_BLOBSIZE(pOut);
001444    break;
001445  }
001446  
001447  /* Opcode: Add P1 P2 P3 * *
001448  ** Synopsis: r[P3]=r[P1]+r[P2]
001449  **
001450  ** Add the value in register P1 to the value in register P2
001451  ** and store the result in register P3.
001452  ** If either input is NULL, the result is NULL.
001453  */
001454  /* Opcode: Multiply P1 P2 P3 * *
001455  ** Synopsis: r[P3]=r[P1]*r[P2]
001456  **
001457  **
001458  ** Multiply the value in register P1 by the value in register P2
001459  ** and store the result in register P3.
001460  ** If either input is NULL, the result is NULL.
001461  */
001462  /* Opcode: Subtract P1 P2 P3 * *
001463  ** Synopsis: r[P3]=r[P2]-r[P1]
001464  **
001465  ** Subtract the value in register P1 from the value in register P2
001466  ** and store the result in register P3.
001467  ** If either input is NULL, the result is NULL.
001468  */
001469  /* Opcode: Divide P1 P2 P3 * *
001470  ** Synopsis: r[P3]=r[P2]/r[P1]
001471  **
001472  ** Divide the value in register P1 by the value in register P2
001473  ** and store the result in register P3 (P3=P2/P1). If the value in 
001474  ** register P1 is zero, then the result is NULL. If either input is 
001475  ** NULL, the result is NULL.
001476  */
001477  /* Opcode: Remainder P1 P2 P3 * *
001478  ** Synopsis: r[P3]=r[P2]%r[P1]
001479  **
001480  ** Compute the remainder after integer register P2 is divided by 
001481  ** register P1 and store the result in register P3. 
001482  ** If the value in register P1 is zero the result is NULL.
001483  ** If either operand is NULL, the result is NULL.
001484  */
001485  case OP_Add:                   /* same as TK_PLUS, in1, in2, out3 */
001486  case OP_Subtract:              /* same as TK_MINUS, in1, in2, out3 */
001487  case OP_Multiply:              /* same as TK_STAR, in1, in2, out3 */
001488  case OP_Divide:                /* same as TK_SLASH, in1, in2, out3 */
001489  case OP_Remainder: {           /* same as TK_REM, in1, in2, out3 */
001490    char bIntint;   /* Started out as two integer operands */
001491    u16 flags;      /* Combined MEM_* flags from both inputs */
001492    u16 type1;      /* Numeric type of left operand */
001493    u16 type2;      /* Numeric type of right operand */
001494    i64 iA;         /* Integer value of left operand */
001495    i64 iB;         /* Integer value of right operand */
001496    double rA;      /* Real value of left operand */
001497    double rB;      /* Real value of right operand */
001498  
001499    pIn1 = &aMem[pOp->p1];
001500    type1 = numericType(pIn1);
001501    pIn2 = &aMem[pOp->p2];
001502    type2 = numericType(pIn2);
001503    pOut = &aMem[pOp->p3];
001504    flags = pIn1->flags | pIn2->flags;
001505    if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
001506    if( (type1 & type2 & MEM_Int)!=0 ){
001507      iA = pIn1->u.i;
001508      iB = pIn2->u.i;
001509      bIntint = 1;
001510      switch( pOp->opcode ){
001511        case OP_Add:       if( sqlite3AddInt64(&iB,iA) ) goto fp_math;  break;
001512        case OP_Subtract:  if( sqlite3SubInt64(&iB,iA) ) goto fp_math;  break;
001513        case OP_Multiply:  if( sqlite3MulInt64(&iB,iA) ) goto fp_math;  break;
001514        case OP_Divide: {
001515          if( iA==0 ) goto arithmetic_result_is_null;
001516          if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
001517          iB /= iA;
001518          break;
001519        }
001520        default: {
001521          if( iA==0 ) goto arithmetic_result_is_null;
001522          if( iA==-1 ) iA = 1;
001523          iB %= iA;
001524          break;
001525        }
001526      }
001527      pOut->u.i = iB;
001528      MemSetTypeFlag(pOut, MEM_Int);
001529    }else{
001530      bIntint = 0;
001531  fp_math:
001532      rA = sqlite3VdbeRealValue(pIn1);
001533      rB = sqlite3VdbeRealValue(pIn2);
001534      switch( pOp->opcode ){
001535        case OP_Add:         rB += rA;       break;
001536        case OP_Subtract:    rB -= rA;       break;
001537        case OP_Multiply:    rB *= rA;       break;
001538        case OP_Divide: {
001539          /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
001540          if( rA==(double)0 ) goto arithmetic_result_is_null;
001541          rB /= rA;
001542          break;
001543        }
001544        default: {
001545          iA = (i64)rA;
001546          iB = (i64)rB;
001547          if( iA==0 ) goto arithmetic_result_is_null;
001548          if( iA==-1 ) iA = 1;
001549          rB = (double)(iB % iA);
001550          break;
001551        }
001552      }
001553  #ifdef SQLITE_OMIT_FLOATING_POINT
001554      pOut->u.i = rB;
001555      MemSetTypeFlag(pOut, MEM_Int);
001556  #else
001557      if( sqlite3IsNaN(rB) ){
001558        goto arithmetic_result_is_null;
001559      }
001560      pOut->u.r = rB;
001561      MemSetTypeFlag(pOut, MEM_Real);
001562      if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
001563        sqlite3VdbeIntegerAffinity(pOut);
001564      }
001565  #endif
001566    }
001567    break;
001568  
001569  arithmetic_result_is_null:
001570    sqlite3VdbeMemSetNull(pOut);
001571    break;
001572  }
001573  
001574  /* Opcode: CollSeq P1 * * P4
001575  **
001576  ** P4 is a pointer to a CollSeq struct. If the next call to a user function
001577  ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
001578  ** be returned. This is used by the built-in min(), max() and nullif()
001579  ** functions.
001580  **
001581  ** If P1 is not zero, then it is a register that a subsequent min() or
001582  ** max() aggregate will set to 1 if the current row is not the minimum or
001583  ** maximum.  The P1 register is initialized to 0 by this instruction.
001584  **
001585  ** The interface used by the implementation of the aforementioned functions
001586  ** to retrieve the collation sequence set by this opcode is not available
001587  ** publicly.  Only built-in functions have access to this feature.
001588  */
001589  case OP_CollSeq: {
001590    assert( pOp->p4type==P4_COLLSEQ );
001591    if( pOp->p1 ){
001592      sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
001593    }
001594    break;
001595  }
001596  
001597  /* Opcode: Function0 P1 P2 P3 P4 P5
001598  ** Synopsis: r[P3]=func(r[P2@P5])
001599  **
001600  ** Invoke a user function (P4 is a pointer to a FuncDef object that
001601  ** defines the function) with P5 arguments taken from register P2 and
001602  ** successors.  The result of the function is stored in register P3.
001603  ** Register P3 must not be one of the function inputs.
001604  **
001605  ** P1 is a 32-bit bitmask indicating whether or not each argument to the 
001606  ** function was determined to be constant at compile time. If the first
001607  ** argument was constant then bit 0 of P1 is set. This is used to determine
001608  ** whether meta data associated with a user function argument using the
001609  ** sqlite3_set_auxdata() API may be safely retained until the next
001610  ** invocation of this opcode.
001611  **
001612  ** See also: Function, AggStep, AggFinal
001613  */
001614  /* Opcode: Function P1 P2 P3 P4 P5
001615  ** Synopsis: r[P3]=func(r[P2@P5])
001616  **
001617  ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
001618  ** contains a pointer to the function to be run) with P5 arguments taken
001619  ** from register P2 and successors.  The result of the function is stored
001620  ** in register P3.  Register P3 must not be one of the function inputs.
001621  **
001622  ** P1 is a 32-bit bitmask indicating whether or not each argument to the 
001623  ** function was determined to be constant at compile time. If the first
001624  ** argument was constant then bit 0 of P1 is set. This is used to determine
001625  ** whether meta data associated with a user function argument using the
001626  ** sqlite3_set_auxdata() API may be safely retained until the next
001627  ** invocation of this opcode.
001628  **
001629  ** SQL functions are initially coded as OP_Function0 with P4 pointing
001630  ** to a FuncDef object.  But on first evaluation, the P4 operand is
001631  ** automatically converted into an sqlite3_context object and the operation
001632  ** changed to this OP_Function opcode.  In this way, the initialization of
001633  ** the sqlite3_context object occurs only once, rather than once for each
001634  ** evaluation of the function.
001635  **
001636  ** See also: Function0, AggStep, AggFinal
001637  */
001638  case OP_Function0: {
001639    int n;
001640    sqlite3_context *pCtx;
001641  
001642    assert( pOp->p4type==P4_FUNCDEF );
001643    n = pOp->p5;
001644    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
001645    assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
001646    assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
001647    pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
001648    if( pCtx==0 ) goto no_mem;
001649    pCtx->pOut = 0;
001650    pCtx->pFunc = pOp->p4.pFunc;
001651    pCtx->iOp = (int)(pOp - aOp);
001652    pCtx->pVdbe = p;
001653    pCtx->argc = n;
001654    pOp->p4type = P4_FUNCCTX;
001655    pOp->p4.pCtx = pCtx;
001656    pOp->opcode = OP_Function;
001657    /* Fall through into OP_Function */
001658  }
001659  case OP_Function: {
001660    int i;
001661    sqlite3_context *pCtx;
001662  
001663    assert( pOp->p4type==P4_FUNCCTX );
001664    pCtx = pOp->p4.pCtx;
001665  
001666    /* If this function is inside of a trigger, the register array in aMem[]
001667    ** might change from one evaluation to the next.  The next block of code
001668    ** checks to see if the register array has changed, and if so it
001669    ** reinitializes the relavant parts of the sqlite3_context object */
001670    pOut = &aMem[pOp->p3];
001671    if( pCtx->pOut != pOut ){
001672      pCtx->pOut = pOut;
001673      for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
001674    }
001675  
001676    memAboutToChange(p, pCtx->pOut);
001677  #ifdef SQLITE_DEBUG
001678    for(i=0; i<pCtx->argc; i++){
001679      assert( memIsValid(pCtx->argv[i]) );
001680      REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
001681    }
001682  #endif
001683    MemSetTypeFlag(pCtx->pOut, MEM_Null);
001684    pCtx->fErrorOrAux = 0;
001685    db->lastRowid = lastRowid;
001686    (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
001687    lastRowid = db->lastRowid;  /* Remember rowid changes made by xSFunc */
001688  
001689    /* If the function returned an error, throw an exception */
001690    if( pCtx->fErrorOrAux ){
001691      if( pCtx->isError ){
001692        sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
001693        rc = pCtx->isError;
001694      }
001695      sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
001696      if( rc ) goto abort_due_to_error;
001697    }
001698  
001699    /* Copy the result of the function into register P3 */
001700    if( pOut->flags & (MEM_Str|MEM_Blob) ){
001701      sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
001702      if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
001703    }
001704  
001705    REGISTER_TRACE(pOp->p3, pCtx->pOut);
001706    UPDATE_MAX_BLOBSIZE(pCtx->pOut);
001707    break;
001708  }
001709  
001710  /* Opcode: BitAnd P1 P2 P3 * *
001711  ** Synopsis: r[P3]=r[P1]&r[P2]
001712  **
001713  ** Take the bit-wise AND of the values in register P1 and P2 and
001714  ** store the result in register P3.
001715  ** If either input is NULL, the result is NULL.
001716  */
001717  /* Opcode: BitOr P1 P2 P3 * *
001718  ** Synopsis: r[P3]=r[P1]|r[P2]
001719  **
001720  ** Take the bit-wise OR of the values in register P1 and P2 and
001721  ** store the result in register P3.
001722  ** If either input is NULL, the result is NULL.
001723  */
001724  /* Opcode: ShiftLeft P1 P2 P3 * *
001725  ** Synopsis: r[P3]=r[P2]<<r[P1]
001726  **
001727  ** Shift the integer value in register P2 to the left by the
001728  ** number of bits specified by the integer in register P1.
001729  ** Store the result in register P3.
001730  ** If either input is NULL, the result is NULL.
001731  */
001732  /* Opcode: ShiftRight P1 P2 P3 * *
001733  ** Synopsis: r[P3]=r[P2]>>r[P1]
001734  **
001735  ** Shift the integer value in register P2 to the right by the
001736  ** number of bits specified by the integer in register P1.
001737  ** Store the result in register P3.
001738  ** If either input is NULL, the result is NULL.
001739  */
001740  case OP_BitAnd:                 /* same as TK_BITAND, in1, in2, out3 */
001741  case OP_BitOr:                  /* same as TK_BITOR, in1, in2, out3 */
001742  case OP_ShiftLeft:              /* same as TK_LSHIFT, in1, in2, out3 */
001743  case OP_ShiftRight: {           /* same as TK_RSHIFT, in1, in2, out3 */
001744    i64 iA;
001745    u64 uA;
001746    i64 iB;
001747    u8 op;
001748  
001749    pIn1 = &aMem[pOp->p1];
001750    pIn2 = &aMem[pOp->p2];
001751    pOut = &aMem[pOp->p3];
001752    if( (pIn1->flags | pIn2->flags) & MEM_Null ){
001753      sqlite3VdbeMemSetNull(pOut);
001754      break;
001755    }
001756    iA = sqlite3VdbeIntValue(pIn2);
001757    iB = sqlite3VdbeIntValue(pIn1);
001758    op = pOp->opcode;
001759    if( op==OP_BitAnd ){
001760      iA &= iB;
001761    }else if( op==OP_BitOr ){
001762      iA |= iB;
001763    }else if( iB!=0 ){
001764      assert( op==OP_ShiftRight || op==OP_ShiftLeft );
001765  
001766      /* If shifting by a negative amount, shift in the other direction */
001767      if( iB<0 ){
001768        assert( OP_ShiftRight==OP_ShiftLeft+1 );
001769        op = 2*OP_ShiftLeft + 1 - op;
001770        iB = iB>(-64) ? -iB : 64;
001771      }
001772  
001773      if( iB>=64 ){
001774        iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
001775      }else{
001776        memcpy(&uA, &iA, sizeof(uA));
001777        if( op==OP_ShiftLeft ){
001778          uA <<= iB;
001779        }else{
001780          uA >>= iB;
001781          /* Sign-extend on a right shift of a negative number */
001782          if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
001783        }
001784        memcpy(&iA, &uA, sizeof(iA));
001785      }
001786    }
001787    pOut->u.i = iA;
001788    MemSetTypeFlag(pOut, MEM_Int);
001789    break;
001790  }
001791  
001792  /* Opcode: AddImm  P1 P2 * * *
001793  ** Synopsis: r[P1]=r[P1]+P2
001794  ** 
001795  ** Add the constant P2 to the value in register P1.
001796  ** The result is always an integer.
001797  **
001798  ** To force any register to be an integer, just add 0.
001799  */
001800  case OP_AddImm: {            /* in1 */
001801    pIn1 = &aMem[pOp->p1];
001802    memAboutToChange(p, pIn1);
001803    sqlite3VdbeMemIntegerify(pIn1);
001804    pIn1->u.i += pOp->p2;
001805    break;
001806  }
001807  
001808  /* Opcode: MustBeInt P1 P2 * * *
001809  ** 
001810  ** Force the value in register P1 to be an integer.  If the value
001811  ** in P1 is not an integer and cannot be converted into an integer
001812  ** without data loss, then jump immediately to P2, or if P2==0
001813  ** raise an SQLITE_MISMATCH exception.
001814  */
001815  case OP_MustBeInt: {            /* jump, in1 */
001816    pIn1 = &aMem[pOp->p1];
001817    if( (pIn1->flags & MEM_Int)==0 ){
001818      applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
001819      VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
001820      if( (pIn1->flags & MEM_Int)==0 ){
001821        if( pOp->p2==0 ){
001822          rc = SQLITE_MISMATCH;
001823          goto abort_due_to_error;
001824        }else{
001825          goto jump_to_p2;
001826        }
001827      }
001828    }
001829    MemSetTypeFlag(pIn1, MEM_Int);
001830    break;
001831  }
001832  
001833  #ifndef SQLITE_OMIT_FLOATING_POINT
001834  /* Opcode: RealAffinity P1 * * * *
001835  **
001836  ** If register P1 holds an integer convert it to a real value.
001837  **
001838  ** This opcode is used when extracting information from a column that
001839  ** has REAL affinity.  Such column values may still be stored as
001840  ** integers, for space efficiency, but after extraction we want them
001841  ** to have only a real value.
001842  */
001843  case OP_RealAffinity: {                  /* in1 */
001844    pIn1 = &aMem[pOp->p1];
001845    if( pIn1->flags & MEM_Int ){
001846      sqlite3VdbeMemRealify(pIn1);
001847    }
001848    break;
001849  }
001850  #endif
001851  
001852  #ifndef SQLITE_OMIT_CAST
001853  /* Opcode: Cast P1 P2 * * *
001854  ** Synopsis: affinity(r[P1])
001855  **
001856  ** Force the value in register P1 to be the type defined by P2.
001857  ** 
001858  ** <ul>
001859  ** <li value="97"> TEXT
001860  ** <li value="98"> BLOB
001861  ** <li value="99"> NUMERIC
001862  ** <li value="100"> INTEGER
001863  ** <li value="101"> REAL
001864  ** </ul>
001865  **
001866  ** A NULL value is not changed by this routine.  It remains NULL.
001867  */
001868  case OP_Cast: {                  /* in1 */
001869    assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
001870    testcase( pOp->p2==SQLITE_AFF_TEXT );
001871    testcase( pOp->p2==SQLITE_AFF_BLOB );
001872    testcase( pOp->p2==SQLITE_AFF_NUMERIC );
001873    testcase( pOp->p2==SQLITE_AFF_INTEGER );
001874    testcase( pOp->p2==SQLITE_AFF_REAL );
001875    pIn1 = &aMem[pOp->p1];
001876    memAboutToChange(p, pIn1);
001877    rc = ExpandBlob(pIn1);
001878    sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
001879    UPDATE_MAX_BLOBSIZE(pIn1);
001880    if( rc ) goto abort_due_to_error;
001881    break;
001882  }
001883  #endif /* SQLITE_OMIT_CAST */
001884  
001885  /* Opcode: Eq P1 P2 P3 P4 P5
001886  ** Synopsis: IF r[P3]==r[P1]
001887  **
001888  ** Compare the values in register P1 and P3.  If reg(P3)==reg(P1) then
001889  ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5, then
001890  ** store the result of comparison in register P2.
001891  **
001892  ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
001893  ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
001894  ** to coerce both inputs according to this affinity before the
001895  ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
001896  ** affinity is used. Note that the affinity conversions are stored
001897  ** back into the input registers P1 and P3.  So this opcode can cause
001898  ** persistent changes to registers P1 and P3.
001899  **
001900  ** Once any conversions have taken place, and neither value is NULL, 
001901  ** the values are compared. If both values are blobs then memcmp() is
001902  ** used to determine the results of the comparison.  If both values
001903  ** are text, then the appropriate collating function specified in
001904  ** P4 is used to do the comparison.  If P4 is not specified then
001905  ** memcmp() is used to compare text string.  If both values are
001906  ** numeric, then a numeric comparison is used. If the two values
001907  ** are of different types, then numbers are considered less than
001908  ** strings and strings are considered less than blobs.
001909  **
001910  ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
001911  ** true or false and is never NULL.  If both operands are NULL then the result
001912  ** of comparison is true.  If either operand is NULL then the result is false.
001913  ** If neither operand is NULL the result is the same as it would be if
001914  ** the SQLITE_NULLEQ flag were omitted from P5.
001915  **
001916  ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
001917  ** content of r[P2] is only changed if the new value is NULL or 0 (false).
001918  ** In other words, a prior r[P2] value will not be overwritten by 1 (true).
001919  */
001920  /* Opcode: Ne P1 P2 P3 P4 P5
001921  ** Synopsis: IF r[P3]!=r[P1]
001922  **
001923  ** This works just like the Eq opcode except that the jump is taken if
001924  ** the operands in registers P1 and P3 are not equal.  See the Eq opcode for
001925  ** additional information.
001926  **
001927  ** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
001928  ** content of r[P2] is only changed if the new value is NULL or 1 (true).
001929  ** In other words, a prior r[P2] value will not be overwritten by 0 (false).
001930  */
001931  /* Opcode: Lt P1 P2 P3 P4 P5
001932  ** Synopsis: IF r[P3]<r[P1]
001933  **
001934  ** Compare the values in register P1 and P3.  If reg(P3)<reg(P1) then
001935  ** jump to address P2.  Or if the SQLITE_STOREP2 flag is set in P5 store
001936  ** the result of comparison (0 or 1 or NULL) into register P2.
001937  **
001938  ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
001939  ** reg(P3) is NULL then the take the jump.  If the SQLITE_JUMPIFNULL 
001940  ** bit is clear then fall through if either operand is NULL.
001941  **
001942  ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
001943  ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made 
001944  ** to coerce both inputs according to this affinity before the
001945  ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
001946  ** affinity is used. Note that the affinity conversions are stored
001947  ** back into the input registers P1 and P3.  So this opcode can cause
001948  ** persistent changes to registers P1 and P3.
001949  **
001950  ** Once any conversions have taken place, and neither value is NULL, 
001951  ** the values are compared. If both values are blobs then memcmp() is
001952  ** used to determine the results of the comparison.  If both values
001953  ** are text, then the appropriate collating function specified in
001954  ** P4 is  used to do the comparison.  If P4 is not specified then
001955  ** memcmp() is used to compare text string.  If both values are
001956  ** numeric, then a numeric comparison is used. If the two values
001957  ** are of different types, then numbers are considered less than
001958  ** strings and strings are considered less than blobs.
001959  */
001960  /* Opcode: Le P1 P2 P3 P4 P5
001961  ** Synopsis: IF r[P3]<=r[P1]
001962  **
001963  ** This works just like the Lt opcode except that the jump is taken if
001964  ** the content of register P3 is less than or equal to the content of
001965  ** register P1.  See the Lt opcode for additional information.
001966  */
001967  /* Opcode: Gt P1 P2 P3 P4 P5
001968  ** Synopsis: IF r[P3]>r[P1]
001969  **
001970  ** This works just like the Lt opcode except that the jump is taken if
001971  ** the content of register P3 is greater than the content of
001972  ** register P1.  See the Lt opcode for additional information.
001973  */
001974  /* Opcode: Ge P1 P2 P3 P4 P5
001975  ** Synopsis: IF r[P3]>=r[P1]
001976  **
001977  ** This works just like the Lt opcode except that the jump is taken if
001978  ** the content of register P3 is greater than or equal to the content of
001979  ** register P1.  See the Lt opcode for additional information.
001980  */
001981  case OP_Eq:               /* same as TK_EQ, jump, in1, in3 */
001982  case OP_Ne:               /* same as TK_NE, jump, in1, in3 */
001983  case OP_Lt:               /* same as TK_LT, jump, in1, in3 */
001984  case OP_Le:               /* same as TK_LE, jump, in1, in3 */
001985  case OP_Gt:               /* same as TK_GT, jump, in1, in3 */
001986  case OP_Ge: {             /* same as TK_GE, jump, in1, in3 */
001987    int res, res2;      /* Result of the comparison of pIn1 against pIn3 */
001988    char affinity;      /* Affinity to use for comparison */
001989    u16 flags1;         /* Copy of initial value of pIn1->flags */
001990    u16 flags3;         /* Copy of initial value of pIn3->flags */
001991  
001992    pIn1 = &aMem[pOp->p1];
001993    pIn3 = &aMem[pOp->p3];
001994    flags1 = pIn1->flags;
001995    flags3 = pIn3->flags;
001996    if( (flags1 | flags3)&MEM_Null ){
001997      /* One or both operands are NULL */
001998      if( pOp->p5 & SQLITE_NULLEQ ){
001999        /* If SQLITE_NULLEQ is set (which will only happen if the operator is
002000        ** OP_Eq or OP_Ne) then take the jump or not depending on whether
002001        ** or not both operands are null.
002002        */
002003        assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
002004        assert( (flags1 & MEM_Cleared)==0 );
002005        assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
002006        if( (flags1&flags3&MEM_Null)!=0
002007         && (flags3&MEM_Cleared)==0
002008        ){
002009          res = 0;  /* Operands are equal */
002010        }else{
002011          res = 1;  /* Operands are not equal */
002012        }
002013      }else{
002014        /* SQLITE_NULLEQ is clear and at least one operand is NULL,
002015        ** then the result is always NULL.
002016        ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
002017        */
002018        if( pOp->p5 & SQLITE_STOREP2 ){
002019          pOut = &aMem[pOp->p2];
002020          iCompare = 1;    /* Operands are not equal */
002021          memAboutToChange(p, pOut);
002022          MemSetTypeFlag(pOut, MEM_Null);
002023          REGISTER_TRACE(pOp->p2, pOut);
002024        }else{
002025          VdbeBranchTaken(2,3);
002026          if( pOp->p5 & SQLITE_JUMPIFNULL ){
002027            goto jump_to_p2;
002028          }
002029        }
002030        break;
002031      }
002032    }else{
002033      /* Neither operand is NULL.  Do a comparison. */
002034      affinity = pOp->p5 & SQLITE_AFF_MASK;
002035      if( affinity>=SQLITE_AFF_NUMERIC ){
002036        if( (flags1 | flags3)&MEM_Str ){
002037          if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
002038            applyNumericAffinity(pIn1,0);
002039            testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
002040            flags3 = pIn3->flags;
002041          }
002042          if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
002043            applyNumericAffinity(pIn3,0);
002044          }
002045        }
002046        /* Handle the common case of integer comparison here, as an
002047        ** optimization, to avoid a call to sqlite3MemCompare() */
002048        if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
002049          if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
002050          if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
002051          res = 0;
002052          goto compare_op;
002053        }
002054      }else if( affinity==SQLITE_AFF_TEXT ){
002055        if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
002056          testcase( pIn1->flags & MEM_Int );
002057          testcase( pIn1->flags & MEM_Real );
002058          sqlite3VdbeMemStringify(pIn1, encoding, 1);
002059          testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
002060          flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
002061          assert( pIn1!=pIn3 );
002062        }
002063        if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
002064          testcase( pIn3->flags & MEM_Int );
002065          testcase( pIn3->flags & MEM_Real );
002066          sqlite3VdbeMemStringify(pIn3, encoding, 1);
002067          testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
002068          flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
002069        }
002070      }
002071      assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
002072      res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
002073    }
002074  compare_op:
002075    switch( pOp->opcode ){
002076      case OP_Eq:    res2 = res==0;     break;
002077      case OP_Ne:    res2 = res;        break;
002078      case OP_Lt:    res2 = res<0;      break;
002079      case OP_Le:    res2 = res<=0;     break;
002080      case OP_Gt:    res2 = res>0;      break;
002081      default:       res2 = res>=0;     break;
002082    }
002083  
002084    /* Undo any changes made by applyAffinity() to the input registers. */
002085    assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
002086    pIn1->flags = flags1;
002087    assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
002088    pIn3->flags = flags3;
002089  
002090    if( pOp->p5 & SQLITE_STOREP2 ){
002091      pOut = &aMem[pOp->p2];
002092      iCompare = res;
002093      res2 = res2!=0;  /* For this path res2 must be exactly 0 or 1 */
002094      if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
002095        /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
002096        ** and prevents OP_Ne from overwriting NULL with 0.  This flag
002097        ** is only used in contexts where either:
002098        **   (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
002099        **   (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
002100        ** Therefore it is not necessary to check the content of r[P2] for
002101        ** NULL. */
002102        assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
002103        assert( res2==0 || res2==1 );
002104        testcase( res2==0 && pOp->opcode==OP_Eq );
002105        testcase( res2==1 && pOp->opcode==OP_Eq );
002106        testcase( res2==0 && pOp->opcode==OP_Ne );
002107        testcase( res2==1 && pOp->opcode==OP_Ne );
002108        if( (pOp->opcode==OP_Eq)==res2 ) break;
002109      }
002110      memAboutToChange(p, pOut);
002111      MemSetTypeFlag(pOut, MEM_Int);
002112      pOut->u.i = res2;
002113      REGISTER_TRACE(pOp->p2, pOut);
002114    }else{
002115      VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
002116      if( res2 ){
002117        goto jump_to_p2;
002118      }
002119    }
002120    break;
002121  }
002122  
002123  /* Opcode: ElseNotEq * P2 * * *
002124  **
002125  ** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
002126  ** If result of an OP_Eq comparison on the same two operands
002127  ** would have be NULL or false (0), then then jump to P2. 
002128  ** If the result of an OP_Eq comparison on the two previous operands
002129  ** would have been true (1), then fall through.
002130  */
002131  case OP_ElseNotEq: {       /* same as TK_ESCAPE, jump */
002132    assert( pOp>aOp );
002133    assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
002134    assert( pOp[-1].p5 & SQLITE_STOREP2 );
002135    VdbeBranchTaken(iCompare!=0, 2);
002136    if( iCompare!=0 ) goto jump_to_p2;
002137    break;
002138  }
002139  
002140  
002141  /* Opcode: Permutation * * * P4 *
002142  **
002143  ** Set the permutation used by the OP_Compare operator to be the array
002144  ** of integers in P4.
002145  **
002146  ** The permutation is only valid until the next OP_Compare that has
002147  ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should 
002148  ** occur immediately prior to the OP_Compare.
002149  **
002150  ** The first integer in the P4 integer array is the length of the array
002151  ** and does not become part of the permutation.
002152  */
002153  case OP_Permutation: {
002154    assert( pOp->p4type==P4_INTARRAY );
002155    assert( pOp->p4.ai );
002156    aPermute = pOp->p4.ai + 1;
002157    break;
002158  }
002159  
002160  /* Opcode: Compare P1 P2 P3 P4 P5
002161  ** Synopsis: r[P1@P3] <-> r[P2@P3]
002162  **
002163  ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
002164  ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B").  Save the result of
002165  ** the comparison for use by the next OP_Jump instruct.
002166  **
002167  ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
002168  ** determined by the most recent OP_Permutation operator.  If the
002169  ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
002170  ** order.
002171  **
002172  ** P4 is a KeyInfo structure that defines collating sequences and sort
002173  ** orders for the comparison.  The permutation applies to registers
002174  ** only.  The KeyInfo elements are used sequentially.
002175  **
002176  ** The comparison is a sort comparison, so NULLs compare equal,
002177  ** NULLs are less than numbers, numbers are less than strings,
002178  ** and strings are less than blobs.
002179  */
002180  case OP_Compare: {
002181    int n;
002182    int i;
002183    int p1;
002184    int p2;
002185    const KeyInfo *pKeyInfo;
002186    int idx;
002187    CollSeq *pColl;    /* Collating sequence to use on this term */
002188    int bRev;          /* True for DESCENDING sort order */
002189  
002190    if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
002191    n = pOp->p3;
002192    pKeyInfo = pOp->p4.pKeyInfo;
002193    assert( n>0 );
002194    assert( pKeyInfo!=0 );
002195    p1 = pOp->p1;
002196    p2 = pOp->p2;
002197  #if SQLITE_DEBUG
002198    if( aPermute ){
002199      int k, mx = 0;
002200      for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
002201      assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
002202      assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
002203    }else{
002204      assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
002205      assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
002206    }
002207  #endif /* SQLITE_DEBUG */
002208    for(i=0; i<n; i++){
002209      idx = aPermute ? aPermute[i] : i;
002210      assert( memIsValid(&aMem[p1+idx]) );
002211      assert( memIsValid(&aMem[p2+idx]) );
002212      REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
002213      REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
002214      assert( i<pKeyInfo->nField );
002215      pColl = pKeyInfo->aColl[i];
002216      bRev = pKeyInfo->aSortOrder[i];
002217      iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
002218      if( iCompare ){
002219        if( bRev ) iCompare = -iCompare;
002220        break;
002221      }
002222    }
002223    aPermute = 0;
002224    break;
002225  }
002226  
002227  /* Opcode: Jump P1 P2 P3 * *
002228  **
002229  ** Jump to the instruction at address P1, P2, or P3 depending on whether
002230  ** in the most recent OP_Compare instruction the P1 vector was less than
002231  ** equal to, or greater than the P2 vector, respectively.
002232  */
002233  case OP_Jump: {             /* jump */
002234    if( iCompare<0 ){
002235      VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
002236    }else if( iCompare==0 ){
002237      VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
002238    }else{
002239      VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
002240    }
002241    break;
002242  }
002243  
002244  /* Opcode: And P1 P2 P3 * *
002245  ** Synopsis: r[P3]=(r[P1] && r[P2])
002246  **
002247  ** Take the logical AND of the values in registers P1 and P2 and
002248  ** write the result into register P3.
002249  **
002250  ** If either P1 or P2 is 0 (false) then the result is 0 even if
002251  ** the other input is NULL.  A NULL and true or two NULLs give
002252  ** a NULL output.
002253  */
002254  /* Opcode: Or P1 P2 P3 * *
002255  ** Synopsis: r[P3]=(r[P1] || r[P2])
002256  **
002257  ** Take the logical OR of the values in register P1 and P2 and
002258  ** store the answer in register P3.
002259  **
002260  ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
002261  ** even if the other input is NULL.  A NULL and false or two NULLs
002262  ** give a NULL output.
002263  */
002264  case OP_And:              /* same as TK_AND, in1, in2, out3 */
002265  case OP_Or: {             /* same as TK_OR, in1, in2, out3 */
002266    int v1;    /* Left operand:  0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
002267    int v2;    /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
002268  
002269    pIn1 = &aMem[pOp->p1];
002270    if( pIn1->flags & MEM_Null ){
002271      v1 = 2;
002272    }else{
002273      v1 = sqlite3VdbeIntValue(pIn1)!=0;
002274    }
002275    pIn2 = &aMem[pOp->p2];
002276    if( pIn2->flags & MEM_Null ){
002277      v2 = 2;
002278    }else{
002279      v2 = sqlite3VdbeIntValue(pIn2)!=0;
002280    }
002281    if( pOp->opcode==OP_And ){
002282      static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
002283      v1 = and_logic[v1*3+v2];
002284    }else{
002285      static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
002286      v1 = or_logic[v1*3+v2];
002287    }
002288    pOut = &aMem[pOp->p3];
002289    if( v1==2 ){
002290      MemSetTypeFlag(pOut, MEM_Null);
002291    }else{
002292      pOut->u.i = v1;
002293      MemSetTypeFlag(pOut, MEM_Int);
002294    }
002295    break;
002296  }
002297  
002298  /* Opcode: Not P1 P2 * * *
002299  ** Synopsis: r[P2]= !r[P1]
002300  **
002301  ** Interpret the value in register P1 as a boolean value.  Store the
002302  ** boolean complement in register P2.  If the value in register P1 is 
002303  ** NULL, then a NULL is stored in P2.
002304  */
002305  case OP_Not: {                /* same as TK_NOT, in1, out2 */
002306    pIn1 = &aMem[pOp->p1];
002307    pOut = &aMem[pOp->p2];
002308    sqlite3VdbeMemSetNull(pOut);
002309    if( (pIn1->flags & MEM_Null)==0 ){
002310      pOut->flags = MEM_Int;
002311      pOut->u.i = !sqlite3VdbeIntValue(pIn1);
002312    }
002313    break;
002314  }
002315  
002316  /* Opcode: BitNot P1 P2 * * *
002317  ** Synopsis: r[P1]= ~r[P1]
002318  **
002319  ** Interpret the content of register P1 as an integer.  Store the
002320  ** ones-complement of the P1 value into register P2.  If P1 holds
002321  ** a NULL then store a NULL in P2.
002322  */
002323  case OP_BitNot: {             /* same as TK_BITNOT, in1, out2 */
002324    pIn1 = &aMem[pOp->p1];
002325    pOut = &aMem[pOp->p2];
002326    sqlite3VdbeMemSetNull(pOut);
002327    if( (pIn1->flags & MEM_Null)==0 ){
002328      pOut->flags = MEM_Int;
002329      pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
002330    }
002331    break;
002332  }
002333  
002334  /* Opcode: Once P1 P2 * * *
002335  **
002336  ** If the P1 value is equal to the P1 value on the OP_Init opcode at
002337  ** instruction 0, then jump to P2.  If the two P1 values differ, then
002338  ** set the P1 value on this opcode to equal the P1 value on the OP_Init
002339  ** and fall through.
002340  */
002341  case OP_Once: {             /* jump */
002342    assert( p->aOp[0].opcode==OP_Init );
002343    VdbeBranchTaken(p->aOp[0].p1==pOp->p1, 2);
002344    if( p->aOp[0].p1==pOp->p1 ){
002345      goto jump_to_p2;
002346    }else{
002347      pOp->p1 = p->aOp[0].p1;
002348    }
002349    break;
002350  }
002351  
002352  /* Opcode: If P1 P2 P3 * *
002353  **
002354  ** Jump to P2 if the value in register P1 is true.  The value
002355  ** is considered true if it is numeric and non-zero.  If the value
002356  ** in P1 is NULL then take the jump if and only if P3 is non-zero.
002357  */
002358  /* Opcode: IfNot P1 P2 P3 * *
002359  **
002360  ** Jump to P2 if the value in register P1 is False.  The value
002361  ** is considered false if it has a numeric value of zero.  If the value
002362  ** in P1 is NULL then take the jump if and only if P3 is non-zero.
002363  */
002364  case OP_If:                 /* jump, in1 */
002365  case OP_IfNot: {            /* jump, in1 */
002366    int c;
002367    pIn1 = &aMem[pOp->p1];
002368    if( pIn1->flags & MEM_Null ){
002369      c = pOp->p3;
002370    }else{
002371  #ifdef SQLITE_OMIT_FLOATING_POINT
002372      c = sqlite3VdbeIntValue(pIn1)!=0;
002373  #else
002374      c = sqlite3VdbeRealValue(pIn1)!=0.0;
002375  #endif
002376      if( pOp->opcode==OP_IfNot ) c = !c;
002377    }
002378    VdbeBranchTaken(c!=0, 2);
002379    if( c ){
002380      goto jump_to_p2;
002381    }
002382    break;
002383  }
002384  
002385  /* Opcode: IsNull P1 P2 * * *
002386  ** Synopsis: if r[P1]==NULL goto P2
002387  **
002388  ** Jump to P2 if the value in register P1 is NULL.
002389  */
002390  case OP_IsNull: {            /* same as TK_ISNULL, jump, in1 */
002391    pIn1 = &aMem[pOp->p1];
002392    VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
002393    if( (pIn1->flags & MEM_Null)!=0 ){
002394      goto jump_to_p2;
002395    }
002396    break;
002397  }
002398  
002399  /* Opcode: NotNull P1 P2 * * *
002400  ** Synopsis: if r[P1]!=NULL goto P2
002401  **
002402  ** Jump to P2 if the value in register P1 is not NULL.  
002403  */
002404  case OP_NotNull: {            /* same as TK_NOTNULL, jump, in1 */
002405    pIn1 = &aMem[pOp->p1];
002406    VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
002407    if( (pIn1->flags & MEM_Null)==0 ){
002408      goto jump_to_p2;
002409    }
002410    break;
002411  }
002412  
002413  /* Opcode: Column P1 P2 P3 P4 P5
002414  ** Synopsis: r[P3]=PX
002415  **
002416  ** Interpret the data that cursor P1 points to as a structure built using
002417  ** the MakeRecord instruction.  (See the MakeRecord opcode for additional
002418  ** information about the format of the data.)  Extract the P2-th column
002419  ** from this record.  If there are less that (P2+1) 
002420  ** values in the record, extract a NULL.
002421  **
002422  ** The value extracted is stored in register P3.
002423  **
002424  ** If the column contains fewer than P2 fields, then extract a NULL.  Or,
002425  ** if the P4 argument is a P4_MEM use the value of the P4 argument as
002426  ** the result.
002427  **
002428  ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
002429  ** then the cache of the cursor is reset prior to extracting the column.
002430  ** The first OP_Column against a pseudo-table after the value of the content
002431  ** register has changed should have this bit set.
002432  **
002433  ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
002434  ** the result is guaranteed to only be used as the argument of a length()
002435  ** or typeof() function, respectively.  The loading of large blobs can be
002436  ** skipped for length() and all content loading can be skipped for typeof().
002437  */
002438  case OP_Column: {
002439    int p2;            /* column number to retrieve */
002440    VdbeCursor *pC;    /* The VDBE cursor */
002441    BtCursor *pCrsr;   /* The BTree cursor */
002442    u32 *aOffset;      /* aOffset[i] is offset to start of data for i-th column */
002443    int len;           /* The length of the serialized data for the column */
002444    int i;             /* Loop counter */
002445    Mem *pDest;        /* Where to write the extracted value */
002446    Mem sMem;          /* For storing the record being decoded */
002447    const u8 *zData;   /* Part of the record being decoded */
002448    const u8 *zHdr;    /* Next unparsed byte of the header */
002449    const u8 *zEndHdr; /* Pointer to first byte after the header */
002450    u32 offset;        /* Offset into the data */
002451    u64 offset64;      /* 64-bit offset */
002452    u32 avail;         /* Number of bytes of available data */
002453    u32 t;             /* A type code from the record header */
002454    Mem *pReg;         /* PseudoTable input register */
002455  
002456    pC = p->apCsr[pOp->p1];
002457    p2 = pOp->p2;
002458  
002459    /* If the cursor cache is stale, bring it up-to-date */
002460    rc = sqlite3VdbeCursorMoveto(&pC, &p2);
002461    if( rc ) goto abort_due_to_error;
002462  
002463    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
002464    pDest = &aMem[pOp->p3];
002465    memAboutToChange(p, pDest);
002466    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
002467    assert( pC!=0 );
002468    assert( p2<pC->nField );
002469    aOffset = pC->aOffset;
002470    assert( pC->eCurType!=CURTYPE_VTAB );
002471    assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
002472    assert( pC->eCurType!=CURTYPE_SORTER );
002473  
002474    if( pC->cacheStatus!=p->cacheCtr ){                /*OPTIMIZATION-IF-FALSE*/
002475      if( pC->nullRow ){
002476        if( pC->eCurType==CURTYPE_PSEUDO ){
002477          assert( pC->uc.pseudoTableReg>0 );
002478          pReg = &aMem[pC->uc.pseudoTableReg];
002479          assert( pReg->flags & MEM_Blob );
002480          assert( memIsValid(pReg) );
002481          pC->payloadSize = pC->szRow = avail = pReg->n;
002482          pC->aRow = (u8*)pReg->z;
002483        }else{
002484          sqlite3VdbeMemSetNull(pDest);
002485          goto op_column_out;
002486        }
002487      }else{
002488        pCrsr = pC->uc.pCursor;
002489        assert( pC->eCurType==CURTYPE_BTREE );
002490        assert( pCrsr );
002491        assert( sqlite3BtreeCursorIsValid(pCrsr) );
002492        pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
002493        pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &avail);
002494        assert( avail<=65536 );  /* Maximum page size is 64KiB */
002495        if( pC->payloadSize <= (u32)avail ){
002496          pC->szRow = pC->payloadSize;
002497        }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
002498          goto too_big;
002499        }else{
002500          pC->szRow = avail;
002501        }
002502      }
002503      pC->cacheStatus = p->cacheCtr;
002504      pC->iHdrOffset = getVarint32(pC->aRow, offset);
002505      pC->nHdrParsed = 0;
002506      aOffset[0] = offset;
002507  
002508  
002509      if( avail<offset ){      /*OPTIMIZATION-IF-FALSE*/
002510        /* pC->aRow does not have to hold the entire row, but it does at least
002511        ** need to cover the header of the record.  If pC->aRow does not contain
002512        ** the complete header, then set it to zero, forcing the header to be
002513        ** dynamically allocated. */
002514        pC->aRow = 0;
002515        pC->szRow = 0;
002516  
002517        /* Make sure a corrupt database has not given us an oversize header.
002518        ** Do this now to avoid an oversize memory allocation.
002519        **
002520        ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
002521        ** types use so much data space that there can only be 4096 and 32 of
002522        ** them, respectively.  So the maximum header length results from a
002523        ** 3-byte type for each of the maximum of 32768 columns plus three
002524        ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
002525        */
002526        if( offset > 98307 || offset > pC->payloadSize ){
002527          rc = SQLITE_CORRUPT_BKPT;
002528          goto abort_due_to_error;
002529        }
002530      }else if( offset>0 ){ /*OPTIMIZATION-IF-TRUE*/
002531        /* The following goto is an optimization.  It can be omitted and
002532        ** everything will still work.  But OP_Column is measurably faster
002533        ** by skipping the subsequent conditional, which is always true.
002534        */
002535        zData = pC->aRow;
002536        assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
002537        goto op_column_read_header;
002538      }
002539    }
002540  
002541    /* Make sure at least the first p2+1 entries of the header have been
002542    ** parsed and valid information is in aOffset[] and pC->aType[].
002543    */
002544    if( pC->nHdrParsed<=p2 ){
002545      /* If there is more header available for parsing in the record, try
002546      ** to extract additional fields up through the p2+1-th field 
002547      */
002548      if( pC->iHdrOffset<aOffset[0] ){
002549        /* Make sure zData points to enough of the record to cover the header. */
002550        if( pC->aRow==0 ){
002551          memset(&sMem, 0, sizeof(sMem));
002552          rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
002553          if( rc!=SQLITE_OK ) goto abort_due_to_error;
002554          zData = (u8*)sMem.z;
002555        }else{
002556          zData = pC->aRow;
002557        }
002558    
002559        /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
002560      op_column_read_header:
002561        i = pC->nHdrParsed;
002562        offset64 = aOffset[i];
002563        zHdr = zData + pC->iHdrOffset;
002564        zEndHdr = zData + aOffset[0];
002565        do{
002566          if( (t = zHdr[0])<0x80 ){
002567            zHdr++;
002568            offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
002569          }else{
002570            zHdr += sqlite3GetVarint32(zHdr, &t);
002571            offset64 += sqlite3VdbeSerialTypeLen(t);
002572          }
002573          pC->aType[i++] = t;
002574          aOffset[i] = (u32)(offset64 & 0xffffffff);
002575        }while( i<=p2 && zHdr<zEndHdr );
002576  
002577        /* The record is corrupt if any of the following are true:
002578        ** (1) the bytes of the header extend past the declared header size
002579        ** (2) the entire header was used but not all data was used
002580        ** (3) the end of the data extends beyond the end of the record.
002581        */
002582        if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
002583         || (offset64 > pC->payloadSize)
002584        ){
002585          if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
002586          rc = SQLITE_CORRUPT_BKPT;
002587          goto abort_due_to_error;
002588        }
002589  
002590        pC->nHdrParsed = i;
002591        pC->iHdrOffset = (u32)(zHdr - zData);
002592        if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
002593      }else{
002594        t = 0;
002595      }
002596  
002597      /* If after trying to extract new entries from the header, nHdrParsed is
002598      ** still not up to p2, that means that the record has fewer than p2
002599      ** columns.  So the result will be either the default value or a NULL.
002600      */
002601      if( pC->nHdrParsed<=p2 ){
002602        if( pOp->p4type==P4_MEM ){
002603          sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
002604        }else{
002605          sqlite3VdbeMemSetNull(pDest);
002606        }
002607        goto op_column_out;
002608      }
002609    }else{
002610      t = pC->aType[p2];
002611    }
002612  
002613    /* Extract the content for the p2+1-th column.  Control can only
002614    ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
002615    ** all valid.
002616    */
002617    assert( p2<pC->nHdrParsed );
002618    assert( rc==SQLITE_OK );
002619    assert( sqlite3VdbeCheckMemInvariants(pDest) );
002620    if( VdbeMemDynamic(pDest) ){
002621      sqlite3VdbeMemSetNull(pDest);
002622    }
002623    assert( t==pC->aType[p2] );
002624    if( pC->szRow>=aOffset[p2+1] ){
002625      /* This is the common case where the desired content fits on the original
002626      ** page - where the content is not on an overflow page */
002627      zData = pC->aRow + aOffset[p2];
002628      if( t<12 ){
002629        sqlite3VdbeSerialGet(zData, t, pDest);
002630      }else{
002631        /* If the column value is a string, we need a persistent value, not
002632        ** a MEM_Ephem value.  This branch is a fast short-cut that is equivalent
002633        ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
002634        */
002635        static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
002636        pDest->n = len = (t-12)/2;
002637        pDest->enc = encoding;
002638        if( pDest->szMalloc < len+2 ){
002639          pDest->flags = MEM_Null;
002640          if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
002641        }else{
002642          pDest->z = pDest->zMalloc;
002643        }
002644        memcpy(pDest->z, zData, len);
002645        pDest->z[len] = 0;
002646        pDest->z[len+1] = 0;
002647        pDest->flags = aFlag[t&1];
002648      }
002649    }else{
002650      pDest->enc = encoding;
002651      /* This branch happens only when content is on overflow pages */
002652      if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
002653            && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
002654       || (len = sqlite3VdbeSerialTypeLen(t))==0
002655      ){
002656        /* Content is irrelevant for
002657        **    1. the typeof() function,
002658        **    2. the length(X) function if X is a blob, and
002659        **    3. if the content length is zero.
002660        ** So we might as well use bogus content rather than reading
002661        ** content from disk. */
002662        static u8 aZero[8];  /* This is the bogus content */
002663        sqlite3VdbeSerialGet(aZero, t, pDest);
002664      }else{
002665        rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
002666        if( rc!=SQLITE_OK ) goto abort_due_to_error;
002667        sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
002668        pDest->flags &= ~MEM_Ephem;
002669      }
002670    }
002671  
002672  op_column_out:
002673    UPDATE_MAX_BLOBSIZE(pDest);
002674    REGISTER_TRACE(pOp->p3, pDest);
002675    break;
002676  }
002677  
002678  /* Opcode: Affinity P1 P2 * P4 *
002679  ** Synopsis: affinity(r[P1@P2])
002680  **
002681  ** Apply affinities to a range of P2 registers starting with P1.
002682  **
002683  ** P4 is a string that is P2 characters long. The nth character of the
002684  ** string indicates the column affinity that should be used for the nth
002685  ** memory cell in the range.
002686  */
002687  case OP_Affinity: {
002688    const char *zAffinity;   /* The affinity to be applied */
002689    char cAff;               /* A single character of affinity */
002690  
002691    zAffinity = pOp->p4.z;
002692    assert( zAffinity!=0 );
002693    assert( zAffinity[pOp->p2]==0 );
002694    pIn1 = &aMem[pOp->p1];
002695    while( (cAff = *(zAffinity++))!=0 ){
002696      assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
002697      assert( memIsValid(pIn1) );
002698      applyAffinity(pIn1, cAff, encoding);
002699      pIn1++;
002700    }
002701    break;
002702  }
002703  
002704  /* Opcode: MakeRecord P1 P2 P3 P4 *
002705  ** Synopsis: r[P3]=mkrec(r[P1@P2])
002706  **
002707  ** Convert P2 registers beginning with P1 into the [record format]
002708  ** use as a data record in a database table or as a key
002709  ** in an index.  The OP_Column opcode can decode the record later.
002710  **
002711  ** P4 may be a string that is P2 characters long.  The nth character of the
002712  ** string indicates the column affinity that should be used for the nth
002713  ** field of the index key.
002714  **
002715  ** The mapping from character to affinity is given by the SQLITE_AFF_
002716  ** macros defined in sqliteInt.h.
002717  **
002718  ** If P4 is NULL then all index fields have the affinity BLOB.
002719  */
002720  case OP_MakeRecord: {
002721    u8 *zNewRecord;        /* A buffer to hold the data for the new record */
002722    Mem *pRec;             /* The new record */
002723    u64 nData;             /* Number of bytes of data space */
002724    int nHdr;              /* Number of bytes of header space */
002725    i64 nByte;             /* Data space required for this record */
002726    i64 nZero;             /* Number of zero bytes at the end of the record */
002727    int nVarint;           /* Number of bytes in a varint */
002728    u32 serial_type;       /* Type field */
002729    Mem *pData0;           /* First field to be combined into the record */
002730    Mem *pLast;            /* Last field of the record */
002731    int nField;            /* Number of fields in the record */
002732    char *zAffinity;       /* The affinity string for the record */
002733    int file_format;       /* File format to use for encoding */
002734    int i;                 /* Space used in zNewRecord[] header */
002735    int j;                 /* Space used in zNewRecord[] content */
002736    u32 len;               /* Length of a field */
002737  
002738    /* Assuming the record contains N fields, the record format looks
002739    ** like this:
002740    **
002741    ** ------------------------------------------------------------------------
002742    ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
002743    ** ------------------------------------------------------------------------
002744    **
002745    ** Data(0) is taken from register P1.  Data(1) comes from register P1+1
002746    ** and so forth.
002747    **
002748    ** Each type field is a varint representing the serial type of the 
002749    ** corresponding data element (see sqlite3VdbeSerialType()). The
002750    ** hdr-size field is also a varint which is the offset from the beginning
002751    ** of the record to data0.
002752    */
002753    nData = 0;         /* Number of bytes of data space */
002754    nHdr = 0;          /* Number of bytes of header space */
002755    nZero = 0;         /* Number of zero bytes at the end of the record */
002756    nField = pOp->p1;
002757    zAffinity = pOp->p4.z;
002758    assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
002759    pData0 = &aMem[nField];
002760    nField = pOp->p2;
002761    pLast = &pData0[nField-1];
002762    file_format = p->minWriteFileFormat;
002763  
002764    /* Identify the output register */
002765    assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
002766    pOut = &aMem[pOp->p3];
002767    memAboutToChange(p, pOut);
002768  
002769    /* Apply the requested affinity to all inputs
002770    */
002771    assert( pData0<=pLast );
002772    if( zAffinity ){
002773      pRec = pData0;
002774      do{
002775        applyAffinity(pRec++, *(zAffinity++), encoding);
002776        assert( zAffinity[0]==0 || pRec<=pLast );
002777      }while( zAffinity[0] );
002778    }
002779  
002780    /* Loop through the elements that will make up the record to figure
002781    ** out how much space is required for the new record.
002782    */
002783    pRec = pLast;
002784    do{
002785      assert( memIsValid(pRec) );
002786      pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
002787      if( pRec->flags & MEM_Zero ){
002788        if( nData ){
002789          if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
002790        }else{
002791          nZero += pRec->u.nZero;
002792          len -= pRec->u.nZero;
002793        }
002794      }
002795      nData += len;
002796      testcase( serial_type==127 );
002797      testcase( serial_type==128 );
002798      nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
002799      if( pRec==pData0 ) break;
002800      pRec--;
002801    }while(1);
002802  
002803    /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
002804    ** which determines the total number of bytes in the header. The varint
002805    ** value is the size of the header in bytes including the size varint
002806    ** itself. */
002807    testcase( nHdr==126 );
002808    testcase( nHdr==127 );
002809    if( nHdr<=126 ){
002810      /* The common case */
002811      nHdr += 1;
002812    }else{
002813      /* Rare case of a really large header */
002814      nVarint = sqlite3VarintLen(nHdr);
002815      nHdr += nVarint;
002816      if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
002817    }
002818    nByte = nHdr+nData;
002819    if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
002820      goto too_big;
002821    }
002822  
002823    /* Make sure the output register has a buffer large enough to store 
002824    ** the new record. The output register (pOp->p3) is not allowed to
002825    ** be one of the input registers (because the following call to
002826    ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
002827    */
002828    if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
002829      goto no_mem;
002830    }
002831    zNewRecord = (u8 *)pOut->z;
002832  
002833    /* Write the record */
002834    i = putVarint32(zNewRecord, nHdr);
002835    j = nHdr;
002836    assert( pData0<=pLast );
002837    pRec = pData0;
002838    do{
002839      serial_type = pRec->uTemp;
002840      /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
002841      ** additional varints, one per column. */
002842      i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
002843      /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
002844      ** immediately follow the header. */
002845      j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
002846    }while( (++pRec)<=pLast );
002847    assert( i==nHdr );
002848    assert( j==nByte );
002849  
002850    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
002851    pOut->n = (int)nByte;
002852    pOut->flags = MEM_Blob;
002853    if( nZero ){
002854      pOut->u.nZero = nZero;
002855      pOut->flags |= MEM_Zero;
002856    }
002857    pOut->enc = SQLITE_UTF8;  /* In case the blob is ever converted to text */
002858    REGISTER_TRACE(pOp->p3, pOut);
002859    UPDATE_MAX_BLOBSIZE(pOut);
002860    break;
002861  }
002862  
002863  /* Opcode: Count P1 P2 * * *
002864  ** Synopsis: r[P2]=count()
002865  **
002866  ** Store the number of entries (an integer value) in the table or index 
002867  ** opened by cursor P1 in register P2
002868  */
002869  #ifndef SQLITE_OMIT_BTREECOUNT
002870  case OP_Count: {         /* out2 */
002871    i64 nEntry;
002872    BtCursor *pCrsr;
002873  
002874    assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
002875    pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
002876    assert( pCrsr );
002877    nEntry = 0;  /* Not needed.  Only used to silence a warning. */
002878    rc = sqlite3BtreeCount(pCrsr, &nEntry);
002879    if( rc ) goto abort_due_to_error;
002880    pOut = out2Prerelease(p, pOp);
002881    pOut->u.i = nEntry;
002882    break;
002883  }
002884  #endif
002885  
002886  /* Opcode: Savepoint P1 * * P4 *
002887  **
002888  ** Open, release or rollback the savepoint named by parameter P4, depending
002889  ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
002890  ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
002891  */
002892  case OP_Savepoint: {
002893    int p1;                         /* Value of P1 operand */
002894    char *zName;                    /* Name of savepoint */
002895    int nName;
002896    Savepoint *pNew;
002897    Savepoint *pSavepoint;
002898    Savepoint *pTmp;
002899    int iSavepoint;
002900    int ii;
002901  
002902    p1 = pOp->p1;
002903    zName = pOp->p4.z;
002904  
002905    /* Assert that the p1 parameter is valid. Also that if there is no open
002906    ** transaction, then there cannot be any savepoints. 
002907    */
002908    assert( db->pSavepoint==0 || db->autoCommit==0 );
002909    assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
002910    assert( db->pSavepoint || db->isTransactionSavepoint==0 );
002911    assert( checkSavepointCount(db) );
002912    assert( p->bIsReader );
002913  
002914    if( p1==SAVEPOINT_BEGIN ){
002915      if( db->nVdbeWrite>0 ){
002916        /* A new savepoint cannot be created if there are active write 
002917        ** statements (i.e. open read/write incremental blob handles).
002918        */
002919        sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
002920        rc = SQLITE_BUSY;
002921      }else{
002922        nName = sqlite3Strlen30(zName);
002923  
002924  #ifndef SQLITE_OMIT_VIRTUALTABLE
002925        /* This call is Ok even if this savepoint is actually a transaction
002926        ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
002927        ** If this is a transaction savepoint being opened, it is guaranteed
002928        ** that the db->aVTrans[] array is empty.  */
002929        assert( db->autoCommit==0 || db->nVTrans==0 );
002930        rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
002931                                  db->nStatement+db->nSavepoint);
002932        if( rc!=SQLITE_OK ) goto abort_due_to_error;
002933  #endif
002934  
002935        /* Create a new savepoint structure. */
002936        pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
002937        if( pNew ){
002938          pNew->zName = (char *)&pNew[1];
002939          memcpy(pNew->zName, zName, nName+1);
002940      
002941          /* If there is no open transaction, then mark this as a special
002942          ** "transaction savepoint". */
002943          if( db->autoCommit ){
002944            db->autoCommit = 0;
002945            db->isTransactionSavepoint = 1;
002946          }else{
002947            db->nSavepoint++;
002948          }
002949  
002950          /* Link the new savepoint into the database handle's list. */
002951          pNew->pNext = db->pSavepoint;
002952          db->pSavepoint = pNew;
002953          pNew->nDeferredCons = db->nDeferredCons;
002954          pNew->nDeferredImmCons = db->nDeferredImmCons;
002955        }
002956      }
002957    }else{
002958      iSavepoint = 0;
002959  
002960      /* Find the named savepoint. If there is no such savepoint, then an
002961      ** an error is returned to the user.  */
002962      for(
002963        pSavepoint = db->pSavepoint; 
002964        pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
002965        pSavepoint = pSavepoint->pNext
002966      ){
002967        iSavepoint++;
002968      }
002969      if( !pSavepoint ){
002970        sqlite3VdbeError(p, "no such savepoint: %s", zName);
002971        rc = SQLITE_ERROR;
002972      }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
002973        /* It is not possible to release (commit) a savepoint if there are 
002974        ** active write statements.
002975        */
002976        sqlite3VdbeError(p, "cannot release savepoint - "
002977                            "SQL statements in progress");
002978        rc = SQLITE_BUSY;
002979      }else{
002980  
002981        /* Determine whether or not this is a transaction savepoint. If so,
002982        ** and this is a RELEASE command, then the current transaction 
002983        ** is committed. 
002984        */
002985        int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
002986        if( isTransaction && p1==SAVEPOINT_RELEASE ){
002987          if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
002988            goto vdbe_return;
002989          }
002990          db->autoCommit = 1;
002991          if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
002992            p->pc = (int)(pOp - aOp);
002993            db->autoCommit = 0;
002994            p->rc = rc = SQLITE_BUSY;
002995            goto vdbe_return;
002996          }
002997          db->isTransactionSavepoint = 0;
002998          rc = p->rc;
002999        }else{
003000          int isSchemaChange;
003001          iSavepoint = db->nSavepoint - iSavepoint - 1;
003002          if( p1==SAVEPOINT_ROLLBACK ){
003003            isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
003004            for(ii=0; ii<db->nDb; ii++){
003005              rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
003006                                         SQLITE_ABORT_ROLLBACK,
003007                                         isSchemaChange==0);
003008              if( rc!=SQLITE_OK ) goto abort_due_to_error;
003009            }
003010          }else{
003011            isSchemaChange = 0;
003012          }
003013          for(ii=0; ii<db->nDb; ii++){
003014            rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
003015            if( rc!=SQLITE_OK ){
003016              goto abort_due_to_error;
003017            }
003018          }
003019          if( isSchemaChange ){
003020            sqlite3ExpirePreparedStatements(db);
003021            sqlite3ResetAllSchemasOfConnection(db);
003022            db->flags = (db->flags | SQLITE_InternChanges);
003023          }
003024        }
003025    
003026        /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all 
003027        ** savepoints nested inside of the savepoint being operated on. */
003028        while( db->pSavepoint!=pSavepoint ){
003029          pTmp = db->pSavepoint;
003030          db->pSavepoint = pTmp->pNext;
003031          sqlite3DbFree(db, pTmp);
003032          db->nSavepoint--;
003033        }
003034  
003035        /* If it is a RELEASE, then destroy the savepoint being operated on 
003036        ** too. If it is a ROLLBACK TO, then set the number of deferred 
003037        ** constraint violations present in the database to the value stored
003038        ** when the savepoint was created.  */
003039        if( p1==SAVEPOINT_RELEASE ){
003040          assert( pSavepoint==db->pSavepoint );
003041          db->pSavepoint = pSavepoint->pNext;
003042          sqlite3DbFree(db, pSavepoint);
003043          if( !isTransaction ){
003044            db->nSavepoint--;
003045          }
003046        }else{
003047          db->nDeferredCons = pSavepoint->nDeferredCons;
003048          db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
003049        }
003050  
003051        if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
003052          rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
003053          if( rc!=SQLITE_OK ) goto abort_due_to_error;
003054        }
003055      }
003056    }
003057    if( rc ) goto abort_due_to_error;
003058  
003059    break;
003060  }
003061  
003062  /* Opcode: AutoCommit P1 P2 * * *
003063  **
003064  ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
003065  ** back any currently active btree transactions. If there are any active
003066  ** VMs (apart from this one), then a ROLLBACK fails.  A COMMIT fails if
003067  ** there are active writing VMs or active VMs that use shared cache.
003068  **
003069  ** This instruction causes the VM to halt.
003070  */
003071  case OP_AutoCommit: {
003072    int desiredAutoCommit;
003073    int iRollback;
003074  
003075    desiredAutoCommit = pOp->p1;
003076    iRollback = pOp->p2;
003077    assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
003078    assert( desiredAutoCommit==1 || iRollback==0 );
003079    assert( db->nVdbeActive>0 );  /* At least this one VM is active */
003080    assert( p->bIsReader );
003081  
003082    if( desiredAutoCommit!=db->autoCommit ){
003083      if( iRollback ){
003084        assert( desiredAutoCommit==1 );
003085        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
003086        db->autoCommit = 1;
003087      }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
003088        /* If this instruction implements a COMMIT and other VMs are writing
003089        ** return an error indicating that the other VMs must complete first. 
003090        */
003091        sqlite3VdbeError(p, "cannot commit transaction - "
003092                            "SQL statements in progress");
003093        rc = SQLITE_BUSY;
003094        goto abort_due_to_error;
003095      }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
003096        goto vdbe_return;
003097      }else{
003098        db->autoCommit = (u8)desiredAutoCommit;
003099      }
003100      if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
003101        p->pc = (int)(pOp - aOp);
003102        db->autoCommit = (u8)(1-desiredAutoCommit);
003103        p->rc = rc = SQLITE_BUSY;
003104        goto vdbe_return;
003105      }
003106      assert( db->nStatement==0 );
003107      sqlite3CloseSavepoints(db);
003108      if( p->rc==SQLITE_OK ){
003109        rc = SQLITE_DONE;
003110      }else{
003111        rc = SQLITE_ERROR;
003112      }
003113      goto vdbe_return;
003114    }else{
003115      sqlite3VdbeError(p,
003116          (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
003117          (iRollback)?"cannot rollback - no transaction is active":
003118                     "cannot commit - no transaction is active"));
003119           
003120      rc = SQLITE_ERROR;
003121      goto abort_due_to_error;
003122    }
003123    break;
003124  }
003125  
003126  /* Opcode: Transaction P1 P2 P3 P4 P5
003127  **
003128  ** Begin a transaction on database P1 if a transaction is not already
003129  ** active.
003130  ** If P2 is non-zero, then a write-transaction is started, or if a 
003131  ** read-transaction is already active, it is upgraded to a write-transaction.
003132  ** If P2 is zero, then a read-transaction is started.
003133  **
003134  ** P1 is the index of the database file on which the transaction is
003135  ** started.  Index 0 is the main database file and index 1 is the
003136  ** file used for temporary tables.  Indices of 2 or more are used for
003137  ** attached databases.
003138  **
003139  ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
003140  ** true (this flag is set if the Vdbe may modify more than one row and may
003141  ** throw an ABORT exception), a statement transaction may also be opened.
003142  ** More specifically, a statement transaction is opened iff the database
003143  ** connection is currently not in autocommit mode, or if there are other
003144  ** active statements. A statement transaction allows the changes made by this
003145  ** VDBE to be rolled back after an error without having to roll back the
003146  ** entire transaction. If no error is encountered, the statement transaction
003147  ** will automatically commit when the VDBE halts.
003148  **
003149  ** If P5!=0 then this opcode also checks the schema cookie against P3
003150  ** and the schema generation counter against P4.
003151  ** The cookie changes its value whenever the database schema changes.
003152  ** This operation is used to detect when that the cookie has changed
003153  ** and that the current process needs to reread the schema.  If the schema
003154  ** cookie in P3 differs from the schema cookie in the database header or
003155  ** if the schema generation counter in P4 differs from the current
003156  ** generation counter, then an SQLITE_SCHEMA error is raised and execution
003157  ** halts.  The sqlite3_step() wrapper function might then reprepare the
003158  ** statement and rerun it from the beginning.
003159  */
003160  case OP_Transaction: {
003161    Btree *pBt;
003162    int iMeta;
003163    int iGen;
003164  
003165    assert( p->bIsReader );
003166    assert( p->readOnly==0 || pOp->p2==0 );
003167    assert( pOp->p1>=0 && pOp->p1<db->nDb );
003168    assert( DbMaskTest(p->btreeMask, pOp->p1) );
003169    if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
003170      rc = SQLITE_READONLY;
003171      goto abort_due_to_error;
003172    }
003173    pBt = db->aDb[pOp->p1].pBt;
003174  
003175    if( pBt ){
003176      rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
003177      testcase( rc==SQLITE_BUSY_SNAPSHOT );
003178      testcase( rc==SQLITE_BUSY_RECOVERY );
003179      if( rc!=SQLITE_OK ){
003180        if( (rc&0xff)==SQLITE_BUSY ){
003181          p->pc = (int)(pOp - aOp);
003182          p->rc = rc;
003183          goto vdbe_return;
003184        }
003185        goto abort_due_to_error;
003186      }
003187  
003188      if( pOp->p2 && p->usesStmtJournal 
003189       && (db->autoCommit==0 || db->nVdbeRead>1) 
003190      ){
003191        assert( sqlite3BtreeIsInTrans(pBt) );
003192        if( p->iStatement==0 ){
003193          assert( db->nStatement>=0 && db->nSavepoint>=0 );
003194          db->nStatement++; 
003195          p->iStatement = db->nSavepoint + db->nStatement;
003196        }
003197  
003198        rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
003199        if( rc==SQLITE_OK ){
003200          rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
003201        }
003202  
003203        /* Store the current value of the database handles deferred constraint
003204        ** counter. If the statement transaction needs to be rolled back,
003205        ** the value of this counter needs to be restored too.  */
003206        p->nStmtDefCons = db->nDeferredCons;
003207        p->nStmtDefImmCons = db->nDeferredImmCons;
003208      }
003209  
003210      /* Gather the schema version number for checking:
003211      ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
003212      ** version is checked to ensure that the schema has not changed since the
003213      ** SQL statement was prepared.
003214      */
003215      sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
003216      iGen = db->aDb[pOp->p1].pSchema->iGeneration;
003217    }else{
003218      iGen = iMeta = 0;
003219    }
003220    assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
003221    if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
003222      sqlite3DbFree(db, p->zErrMsg);
003223      p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
003224      /* If the schema-cookie from the database file matches the cookie 
003225      ** stored with the in-memory representation of the schema, do
003226      ** not reload the schema from the database file.
003227      **
003228      ** If virtual-tables are in use, this is not just an optimization.
003229      ** Often, v-tables store their data in other SQLite tables, which
003230      ** are queried from within xNext() and other v-table methods using
003231      ** prepared queries. If such a query is out-of-date, we do not want to
003232      ** discard the database schema, as the user code implementing the
003233      ** v-table would have to be ready for the sqlite3_vtab structure itself
003234      ** to be invalidated whenever sqlite3_step() is called from within 
003235      ** a v-table method.
003236      */
003237      if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
003238        sqlite3ResetOneSchema(db, pOp->p1);
003239      }
003240      p->expired = 1;
003241      rc = SQLITE_SCHEMA;
003242    }
003243    if( rc ) goto abort_due_to_error;
003244    break;
003245  }
003246  
003247  /* Opcode: ReadCookie P1 P2 P3 * *
003248  **
003249  ** Read cookie number P3 from database P1 and write it into register P2.
003250  ** P3==1 is the schema version.  P3==2 is the database format.
003251  ** P3==3 is the recommended pager cache size, and so forth.  P1==0 is
003252  ** the main database file and P1==1 is the database file used to store
003253  ** temporary tables.
003254  **
003255  ** There must be a read-lock on the database (either a transaction
003256  ** must be started or there must be an open cursor) before
003257  ** executing this instruction.
003258  */
003259  case OP_ReadCookie: {               /* out2 */
003260    int iMeta;
003261    int iDb;
003262    int iCookie;
003263  
003264    assert( p->bIsReader );
003265    iDb = pOp->p1;
003266    iCookie = pOp->p3;
003267    assert( pOp->p3<SQLITE_N_BTREE_META );
003268    assert( iDb>=0 && iDb<db->nDb );
003269    assert( db->aDb[iDb].pBt!=0 );
003270    assert( DbMaskTest(p->btreeMask, iDb) );
003271  
003272    sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
003273    pOut = out2Prerelease(p, pOp);
003274    pOut->u.i = iMeta;
003275    break;
003276  }
003277  
003278  /* Opcode: SetCookie P1 P2 P3 * *
003279  **
003280  ** Write the integer value P3 into cookie number P2 of database P1.
003281  ** P2==1 is the schema version.  P2==2 is the database format.
003282  ** P2==3 is the recommended pager cache 
003283  ** size, and so forth.  P1==0 is the main database file and P1==1 is the 
003284  ** database file used to store temporary tables.
003285  **
003286  ** A transaction must be started before executing this opcode.
003287  */
003288  case OP_SetCookie: {
003289    Db *pDb;
003290    assert( pOp->p2<SQLITE_N_BTREE_META );
003291    assert( pOp->p1>=0 && pOp->p1<db->nDb );
003292    assert( DbMaskTest(p->btreeMask, pOp->p1) );
003293    assert( p->readOnly==0 );
003294    pDb = &db->aDb[pOp->p1];
003295    assert( pDb->pBt!=0 );
003296    assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
003297    /* See note about index shifting on OP_ReadCookie */
003298    rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
003299    if( pOp->p2==BTREE_SCHEMA_VERSION ){
003300      /* When the schema cookie changes, record the new cookie internally */
003301      pDb->pSchema->schema_cookie = pOp->p3;
003302      db->flags |= SQLITE_InternChanges;
003303    }else if( pOp->p2==BTREE_FILE_FORMAT ){
003304      /* Record changes in the file format */
003305      pDb->pSchema->file_format = pOp->p3;
003306    }
003307    if( pOp->p1==1 ){
003308      /* Invalidate all prepared statements whenever the TEMP database
003309      ** schema is changed.  Ticket #1644 */
003310      sqlite3ExpirePreparedStatements(db);
003311      p->expired = 0;
003312    }
003313    if( rc ) goto abort_due_to_error;
003314    break;
003315  }
003316  
003317  /* Opcode: OpenRead P1 P2 P3 P4 P5
003318  ** Synopsis: root=P2 iDb=P3
003319  **
003320  ** Open a read-only cursor for the database table whose root page is
003321  ** P2 in a database file.  The database file is determined by P3. 
003322  ** P3==0 means the main database, P3==1 means the database used for 
003323  ** temporary tables, and P3>1 means used the corresponding attached
003324  ** database.  Give the new cursor an identifier of P1.  The P1
003325  ** values need not be contiguous but all P1 values should be small integers.
003326  ** It is an error for P1 to be negative.
003327  **
003328  ** If P5!=0 then use the content of register P2 as the root page, not
003329  ** the value of P2 itself.
003330  **
003331  ** There will be a read lock on the database whenever there is an
003332  ** open cursor.  If the database was unlocked prior to this instruction
003333  ** then a read lock is acquired as part of this instruction.  A read
003334  ** lock allows other processes to read the database but prohibits
003335  ** any other process from modifying the database.  The read lock is
003336  ** released when all cursors are closed.  If this instruction attempts
003337  ** to get a read lock but fails, the script terminates with an
003338  ** SQLITE_BUSY error code.
003339  **
003340  ** The P4 value may be either an integer (P4_INT32) or a pointer to
003341  ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
003342  ** structure, then said structure defines the content and collating 
003343  ** sequence of the index being opened. Otherwise, if P4 is an integer 
003344  ** value, it is set to the number of columns in the table.
003345  **
003346  ** See also: OpenWrite, ReopenIdx
003347  */
003348  /* Opcode: ReopenIdx P1 P2 P3 P4 P5
003349  ** Synopsis: root=P2 iDb=P3
003350  **
003351  ** The ReopenIdx opcode works exactly like ReadOpen except that it first
003352  ** checks to see if the cursor on P1 is already open with a root page
003353  ** number of P2 and if it is this opcode becomes a no-op.  In other words,
003354  ** if the cursor is already open, do not reopen it.
003355  **
003356  ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
003357  ** a P4_KEYINFO object.  Furthermore, the P3 value must be the same as
003358  ** every other ReopenIdx or OpenRead for the same cursor number.
003359  **
003360  ** See the OpenRead opcode documentation for additional information.
003361  */
003362  /* Opcode: OpenWrite P1 P2 P3 P4 P5
003363  ** Synopsis: root=P2 iDb=P3
003364  **
003365  ** Open a read/write cursor named P1 on the table or index whose root
003366  ** page is P2.  Or if P5!=0 use the content of register P2 to find the
003367  ** root page.
003368  **
003369  ** The P4 value may be either an integer (P4_INT32) or a pointer to
003370  ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo 
003371  ** structure, then said structure defines the content and collating 
003372  ** sequence of the index being opened. Otherwise, if P4 is an integer 
003373  ** value, it is set to the number of columns in the table, or to the
003374  ** largest index of any column of the table that is actually used.
003375  **
003376  ** This instruction works just like OpenRead except that it opens the cursor
003377  ** in read/write mode.  For a given table, there can be one or more read-only
003378  ** cursors or a single read/write cursor but not both.
003379  **
003380  ** See also OpenRead.
003381  */
003382  case OP_ReopenIdx: {
003383    int nField;
003384    KeyInfo *pKeyInfo;
003385    int p2;
003386    int iDb;
003387    int wrFlag;
003388    Btree *pX;
003389    VdbeCursor *pCur;
003390    Db *pDb;
003391  
003392    assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
003393    assert( pOp->p4type==P4_KEYINFO );
003394    pCur = p->apCsr[pOp->p1];
003395    if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
003396      assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
003397      goto open_cursor_set_hints;
003398    }
003399    /* If the cursor is not currently open or is open on a different
003400    ** index, then fall through into OP_OpenRead to force a reopen */
003401  case OP_OpenRead:
003402  case OP_OpenWrite:
003403  
003404    assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
003405    assert( p->bIsReader );
003406    assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
003407            || p->readOnly==0 );
003408  
003409    if( p->expired ){
003410      rc = SQLITE_ABORT_ROLLBACK;
003411      goto abort_due_to_error;
003412    }
003413  
003414    nField = 0;
003415    pKeyInfo = 0;
003416    p2 = pOp->p2;
003417    iDb = pOp->p3;
003418    assert( iDb>=0 && iDb<db->nDb );
003419    assert( DbMaskTest(p->btreeMask, iDb) );
003420    pDb = &db->aDb[iDb];
003421    pX = pDb->pBt;
003422    assert( pX!=0 );
003423    if( pOp->opcode==OP_OpenWrite ){
003424      assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
003425      wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
003426      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
003427      if( pDb->pSchema->file_format < p->minWriteFileFormat ){
003428        p->minWriteFileFormat = pDb->pSchema->file_format;
003429      }
003430    }else{
003431      wrFlag = 0;
003432    }
003433    if( pOp->p5 & OPFLAG_P2ISREG ){
003434      assert( p2>0 );
003435      assert( p2<=(p->nMem+1 - p->nCursor) );
003436      pIn2 = &aMem[p2];
003437      assert( memIsValid(pIn2) );
003438      assert( (pIn2->flags & MEM_Int)!=0 );
003439      sqlite3VdbeMemIntegerify(pIn2);
003440      p2 = (int)pIn2->u.i;
003441      /* The p2 value always comes from a prior OP_CreateTable opcode and
003442      ** that opcode will always set the p2 value to 2 or more or else fail.
003443      ** If there were a failure, the prepared statement would have halted
003444      ** before reaching this instruction. */
003445      assert( p2>=2 );
003446    }
003447    if( pOp->p4type==P4_KEYINFO ){
003448      pKeyInfo = pOp->p4.pKeyInfo;
003449      assert( pKeyInfo->enc==ENC(db) );
003450      assert( pKeyInfo->db==db );
003451      nField = pKeyInfo->nField+pKeyInfo->nXField;
003452    }else if( pOp->p4type==P4_INT32 ){
003453      nField = pOp->p4.i;
003454    }
003455    assert( pOp->p1>=0 );
003456    assert( nField>=0 );
003457    testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
003458    pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
003459    if( pCur==0 ) goto no_mem;
003460    pCur->nullRow = 1;
003461    pCur->isOrdered = 1;
003462    pCur->pgnoRoot = p2;
003463  #ifdef SQLITE_DEBUG
003464    pCur->wrFlag = wrFlag;
003465  #endif
003466    rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
003467    pCur->pKeyInfo = pKeyInfo;
003468    /* Set the VdbeCursor.isTable variable. Previous versions of
003469    ** SQLite used to check if the root-page flags were sane at this point
003470    ** and report database corruption if they were not, but this check has
003471    ** since moved into the btree layer.  */  
003472    pCur->isTable = pOp->p4type!=P4_KEYINFO;
003473  
003474  open_cursor_set_hints:
003475    assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
003476    assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
003477    testcase( pOp->p5 & OPFLAG_BULKCSR );
003478  #ifdef SQLITE_ENABLE_CURSOR_HINTS
003479    testcase( pOp->p2 & OPFLAG_SEEKEQ );
003480  #endif
003481    sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
003482                                 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
003483    if( rc ) goto abort_due_to_error;
003484    break;
003485  }
003486  
003487  /* Opcode: OpenEphemeral P1 P2 * P4 P5
003488  ** Synopsis: nColumn=P2
003489  **
003490  ** Open a new cursor P1 to a transient table.
003491  ** The cursor is always opened read/write even if 
003492  ** the main database is read-only.  The ephemeral
003493  ** table is deleted automatically when the cursor is closed.
003494  **
003495  ** P2 is the number of columns in the ephemeral table.
003496  ** The cursor points to a BTree table if P4==0 and to a BTree index
003497  ** if P4 is not 0.  If P4 is not NULL, it points to a KeyInfo structure
003498  ** that defines the format of keys in the index.
003499  **
003500  ** The P5 parameter can be a mask of the BTREE_* flags defined
003501  ** in btree.h.  These flags control aspects of the operation of
003502  ** the btree.  The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
003503  ** added automatically.
003504  */
003505  /* Opcode: OpenAutoindex P1 P2 * P4 *
003506  ** Synopsis: nColumn=P2
003507  **
003508  ** This opcode works the same as OP_OpenEphemeral.  It has a
003509  ** different name to distinguish its use.  Tables created using
003510  ** by this opcode will be used for automatically created transient
003511  ** indices in joins.
003512  */
003513  case OP_OpenAutoindex: 
003514  case OP_OpenEphemeral: {
003515    VdbeCursor *pCx;
003516    KeyInfo *pKeyInfo;
003517  
003518    static const int vfsFlags = 
003519        SQLITE_OPEN_READWRITE |
003520        SQLITE_OPEN_CREATE |
003521        SQLITE_OPEN_EXCLUSIVE |
003522        SQLITE_OPEN_DELETEONCLOSE |
003523        SQLITE_OPEN_TRANSIENT_DB;
003524    assert( pOp->p1>=0 );
003525    assert( pOp->p2>=0 );
003526    pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
003527    if( pCx==0 ) goto no_mem;
003528    pCx->nullRow = 1;
003529    pCx->isEphemeral = 1;
003530    rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx, 
003531                          BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
003532    if( rc==SQLITE_OK ){
003533      rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1);
003534    }
003535    if( rc==SQLITE_OK ){
003536      /* If a transient index is required, create it by calling
003537      ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
003538      ** opening it. If a transient table is required, just use the
003539      ** automatically created table with root-page 1 (an BLOB_INTKEY table).
003540      */
003541      if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
003542        int pgno;
003543        assert( pOp->p4type==P4_KEYINFO );
003544        rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5); 
003545        if( rc==SQLITE_OK ){
003546          assert( pgno==MASTER_ROOT+1 );
003547          assert( pKeyInfo->db==db );
003548          assert( pKeyInfo->enc==ENC(db) );
003549          rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
003550                                  pKeyInfo, pCx->uc.pCursor);
003551        }
003552        pCx->isTable = 0;
003553      }else{
003554        rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
003555                                0, pCx->uc.pCursor);
003556        pCx->isTable = 1;
003557      }
003558    }
003559    if( rc ) goto abort_due_to_error;
003560    pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
003561    break;
003562  }
003563  
003564  /* Opcode: SorterOpen P1 P2 P3 P4 *
003565  **
003566  ** This opcode works like OP_OpenEphemeral except that it opens
003567  ** a transient index that is specifically designed to sort large
003568  ** tables using an external merge-sort algorithm.
003569  **
003570  ** If argument P3 is non-zero, then it indicates that the sorter may
003571  ** assume that a stable sort considering the first P3 fields of each
003572  ** key is sufficient to produce the required results.
003573  */
003574  case OP_SorterOpen: {
003575    VdbeCursor *pCx;
003576  
003577    assert( pOp->p1>=0 );
003578    assert( pOp->p2>=0 );
003579    pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
003580    if( pCx==0 ) goto no_mem;
003581    pCx->pKeyInfo = pOp->p4.pKeyInfo;
003582    assert( pCx->pKeyInfo->db==db );
003583    assert( pCx->pKeyInfo->enc==ENC(db) );
003584    rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
003585    if( rc ) goto abort_due_to_error;
003586    break;
003587  }
003588  
003589  /* Opcode: SequenceTest P1 P2 * * *
003590  ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
003591  **
003592  ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
003593  ** to P2. Regardless of whether or not the jump is taken, increment the
003594  ** the sequence value.
003595  */
003596  case OP_SequenceTest: {
003597    VdbeCursor *pC;
003598    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
003599    pC = p->apCsr[pOp->p1];
003600    assert( isSorter(pC) );
003601    if( (pC->seqCount++)==0 ){
003602      goto jump_to_p2;
003603    }
003604    break;
003605  }
003606  
003607  /* Opcode: OpenPseudo P1 P2 P3 * *
003608  ** Synopsis: P3 columns in r[P2]
003609  **
003610  ** Open a new cursor that points to a fake table that contains a single
003611  ** row of data.  The content of that one row is the content of memory
003612  ** register P2.  In other words, cursor P1 becomes an alias for the 
003613  ** MEM_Blob content contained in register P2.
003614  **
003615  ** A pseudo-table created by this opcode is used to hold a single
003616  ** row output from the sorter so that the row can be decomposed into
003617  ** individual columns using the OP_Column opcode.  The OP_Column opcode
003618  ** is the only cursor opcode that works with a pseudo-table.
003619  **
003620  ** P3 is the number of fields in the records that will be stored by
003621  ** the pseudo-table.
003622  */
003623  case OP_OpenPseudo: {
003624    VdbeCursor *pCx;
003625  
003626    assert( pOp->p1>=0 );
003627    assert( pOp->p3>=0 );
003628    pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
003629    if( pCx==0 ) goto no_mem;
003630    pCx->nullRow = 1;
003631    pCx->uc.pseudoTableReg = pOp->p2;
003632    pCx->isTable = 1;
003633    assert( pOp->p5==0 );
003634    break;
003635  }
003636  
003637  /* Opcode: Close P1 * * * *
003638  **
003639  ** Close a cursor previously opened as P1.  If P1 is not
003640  ** currently open, this instruction is a no-op.
003641  */
003642  case OP_Close: {
003643    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
003644    sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
003645    p->apCsr[pOp->p1] = 0;
003646    break;
003647  }
003648  
003649  #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
003650  /* Opcode: ColumnsUsed P1 * * P4 *
003651  **
003652  ** This opcode (which only exists if SQLite was compiled with
003653  ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
003654  ** table or index for cursor P1 are used.  P4 is a 64-bit integer
003655  ** (P4_INT64) in which the first 63 bits are one for each of the
003656  ** first 63 columns of the table or index that are actually used
003657  ** by the cursor.  The high-order bit is set if any column after
003658  ** the 64th is used.
003659  */
003660  case OP_ColumnsUsed: {
003661    VdbeCursor *pC;
003662    pC = p->apCsr[pOp->p1];
003663    assert( pC->eCurType==CURTYPE_BTREE );
003664    pC->maskUsed = *(u64*)pOp->p4.pI64;
003665    break;
003666  }
003667  #endif
003668  
003669  /* Opcode: SeekGE P1 P2 P3 P4 *
003670  ** Synopsis: key=r[P3@P4]
003671  **
003672  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
003673  ** use the value in register P3 as the key.  If cursor P1 refers 
003674  ** to an SQL index, then P3 is the first in an array of P4 registers 
003675  ** that are used as an unpacked index key. 
003676  **
003677  ** Reposition cursor P1 so that  it points to the smallest entry that 
003678  ** is greater than or equal to the key value. If there are no records 
003679  ** greater than or equal to the key and P2 is not zero, then jump to P2.
003680  **
003681  ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
003682  ** opcode will always land on a record that equally equals the key, or
003683  ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
003684  ** opcode must be followed by an IdxLE opcode with the same arguments.
003685  ** The IdxLE opcode will be skipped if this opcode succeeds, but the
003686  ** IdxLE opcode will be used on subsequent loop iterations.
003687  **
003688  ** This opcode leaves the cursor configured to move in forward order,
003689  ** from the beginning toward the end.  In other words, the cursor is
003690  ** configured to use Next, not Prev.
003691  **
003692  ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
003693  */
003694  /* Opcode: SeekGT P1 P2 P3 P4 *
003695  ** Synopsis: key=r[P3@P4]
003696  **
003697  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
003698  ** use the value in register P3 as a key. If cursor P1 refers 
003699  ** to an SQL index, then P3 is the first in an array of P4 registers 
003700  ** that are used as an unpacked index key. 
003701  **
003702  ** Reposition cursor P1 so that  it points to the smallest entry that 
003703  ** is greater than the key value. If there are no records greater than 
003704  ** the key and P2 is not zero, then jump to P2.
003705  **
003706  ** This opcode leaves the cursor configured to move in forward order,
003707  ** from the beginning toward the end.  In other words, the cursor is
003708  ** configured to use Next, not Prev.
003709  **
003710  ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
003711  */
003712  /* Opcode: SeekLT P1 P2 P3 P4 * 
003713  ** Synopsis: key=r[P3@P4]
003714  **
003715  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
003716  ** use the value in register P3 as a key. If cursor P1 refers 
003717  ** to an SQL index, then P3 is the first in an array of P4 registers 
003718  ** that are used as an unpacked index key. 
003719  **
003720  ** Reposition cursor P1 so that  it points to the largest entry that 
003721  ** is less than the key value. If there are no records less than 
003722  ** the key and P2 is not zero, then jump to P2.
003723  **
003724  ** This opcode leaves the cursor configured to move in reverse order,
003725  ** from the end toward the beginning.  In other words, the cursor is
003726  ** configured to use Prev, not Next.
003727  **
003728  ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
003729  */
003730  /* Opcode: SeekLE P1 P2 P3 P4 *
003731  ** Synopsis: key=r[P3@P4]
003732  **
003733  ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
003734  ** use the value in register P3 as a key. If cursor P1 refers 
003735  ** to an SQL index, then P3 is the first in an array of P4 registers 
003736  ** that are used as an unpacked index key. 
003737  **
003738  ** Reposition cursor P1 so that it points to the largest entry that 
003739  ** is less than or equal to the key value. If there are no records 
003740  ** less than or equal to the key and P2 is not zero, then jump to P2.
003741  **
003742  ** This opcode leaves the cursor configured to move in reverse order,
003743  ** from the end toward the beginning.  In other words, the cursor is
003744  ** configured to use Prev, not Next.
003745  **
003746  ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
003747  ** opcode will always land on a record that equally equals the key, or
003748  ** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
003749  ** opcode must be followed by an IdxGE opcode with the same arguments.
003750  ** The IdxGE opcode will be skipped if this opcode succeeds, but the
003751  ** IdxGE opcode will be used on subsequent loop iterations.
003752  **
003753  ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
003754  */
003755  case OP_SeekLT:         /* jump, in3 */
003756  case OP_SeekLE:         /* jump, in3 */
003757  case OP_SeekGE:         /* jump, in3 */
003758  case OP_SeekGT: {       /* jump, in3 */
003759    int res;           /* Comparison result */
003760    int oc;            /* Opcode */
003761    VdbeCursor *pC;    /* The cursor to seek */
003762    UnpackedRecord r;  /* The key to seek for */
003763    int nField;        /* Number of columns or fields in the key */
003764    i64 iKey;          /* The rowid we are to seek to */
003765    int eqOnly;        /* Only interested in == results */
003766  
003767    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
003768    assert( pOp->p2!=0 );
003769    pC = p->apCsr[pOp->p1];
003770    assert( pC!=0 );
003771    assert( pC->eCurType==CURTYPE_BTREE );
003772    assert( OP_SeekLE == OP_SeekLT+1 );
003773    assert( OP_SeekGE == OP_SeekLT+2 );
003774    assert( OP_SeekGT == OP_SeekLT+3 );
003775    assert( pC->isOrdered );
003776    assert( pC->uc.pCursor!=0 );
003777    oc = pOp->opcode;
003778    eqOnly = 0;
003779    pC->nullRow = 0;
003780  #ifdef SQLITE_DEBUG
003781    pC->seekOp = pOp->opcode;
003782  #endif
003783  
003784    if( pC->isTable ){
003785      /* The BTREE_SEEK_EQ flag is only set on index cursors */
003786      assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
003787                || CORRUPT_DB );
003788  
003789      /* The input value in P3 might be of any type: integer, real, string,
003790      ** blob, or NULL.  But it needs to be an integer before we can do
003791      ** the seek, so convert it. */
003792      pIn3 = &aMem[pOp->p3];
003793      if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
003794        applyNumericAffinity(pIn3, 0);
003795      }
003796      iKey = sqlite3VdbeIntValue(pIn3);
003797  
003798      /* If the P3 value could not be converted into an integer without
003799      ** loss of information, then special processing is required... */
003800      if( (pIn3->flags & MEM_Int)==0 ){
003801        if( (pIn3->flags & MEM_Real)==0 ){
003802          /* If the P3 value cannot be converted into any kind of a number,
003803          ** then the seek is not possible, so jump to P2 */
003804          VdbeBranchTaken(1,2); goto jump_to_p2;
003805          break;
003806        }
003807  
003808        /* If the approximation iKey is larger than the actual real search
003809        ** term, substitute >= for > and < for <=. e.g. if the search term
003810        ** is 4.9 and the integer approximation 5:
003811        **
003812        **        (x >  4.9)    ->     (x >= 5)
003813        **        (x <= 4.9)    ->     (x <  5)
003814        */
003815        if( pIn3->u.r<(double)iKey ){
003816          assert( OP_SeekGE==(OP_SeekGT-1) );
003817          assert( OP_SeekLT==(OP_SeekLE-1) );
003818          assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
003819          if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
003820        }
003821  
003822        /* If the approximation iKey is smaller than the actual real search
003823        ** term, substitute <= for < and > for >=.  */
003824        else if( pIn3->u.r>(double)iKey ){
003825          assert( OP_SeekLE==(OP_SeekLT+1) );
003826          assert( OP_SeekGT==(OP_SeekGE+1) );
003827          assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
003828          if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
003829        }
003830      } 
003831      rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
003832      pC->movetoTarget = iKey;  /* Used by OP_Delete */
003833      if( rc!=SQLITE_OK ){
003834        goto abort_due_to_error;
003835      }
003836    }else{
003837      /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
003838      ** OP_SeekLE opcodes are allowed, and these must be immediately followed
003839      ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
003840      */
003841      if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
003842        eqOnly = 1;
003843        assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
003844        assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
003845        assert( pOp[1].p1==pOp[0].p1 );
003846        assert( pOp[1].p2==pOp[0].p2 );
003847        assert( pOp[1].p3==pOp[0].p3 );
003848        assert( pOp[1].p4.i==pOp[0].p4.i );
003849      }
003850  
003851      nField = pOp->p4.i;
003852      assert( pOp->p4type==P4_INT32 );
003853      assert( nField>0 );
003854      r.pKeyInfo = pC->pKeyInfo;
003855      r.nField = (u16)nField;
003856  
003857      /* The next line of code computes as follows, only faster:
003858      **   if( oc==OP_SeekGT || oc==OP_SeekLE ){
003859      **     r.default_rc = -1;
003860      **   }else{
003861      **     r.default_rc = +1;
003862      **   }
003863      */
003864      r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
003865      assert( oc!=OP_SeekGT || r.default_rc==-1 );
003866      assert( oc!=OP_SeekLE || r.default_rc==-1 );
003867      assert( oc!=OP_SeekGE || r.default_rc==+1 );
003868      assert( oc!=OP_SeekLT || r.default_rc==+1 );
003869  
003870      r.aMem = &aMem[pOp->p3];
003871  #ifdef SQLITE_DEBUG
003872      { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
003873  #endif
003874      r.eqSeen = 0;
003875      rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
003876      if( rc!=SQLITE_OK ){
003877        goto abort_due_to_error;
003878      }
003879      if( eqOnly && r.eqSeen==0 ){
003880        assert( res!=0 );
003881        goto seek_not_found;
003882      }
003883    }
003884    pC->deferredMoveto = 0;
003885    pC->cacheStatus = CACHE_STALE;
003886  #ifdef SQLITE_TEST
003887    sqlite3_search_count++;
003888  #endif
003889    if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
003890      if( res<0 || (res==0 && oc==OP_SeekGT) ){
003891        res = 0;
003892        rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
003893        if( rc!=SQLITE_OK ) goto abort_due_to_error;
003894      }else{
003895        res = 0;
003896      }
003897    }else{
003898      assert( oc==OP_SeekLT || oc==OP_SeekLE );
003899      if( res>0 || (res==0 && oc==OP_SeekLT) ){
003900        res = 0;
003901        rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
003902        if( rc!=SQLITE_OK ) goto abort_due_to_error;
003903      }else{
003904        /* res might be negative because the table is empty.  Check to
003905        ** see if this is the case.
003906        */
003907        res = sqlite3BtreeEof(pC->uc.pCursor);
003908      }
003909    }
003910  seek_not_found:
003911    assert( pOp->p2>0 );
003912    VdbeBranchTaken(res!=0,2);
003913    if( res ){
003914      goto jump_to_p2;
003915    }else if( eqOnly ){
003916      assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
003917      pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
003918    }
003919    break;
003920  }
003921  
003922  /* Opcode: Found P1 P2 P3 P4 *
003923  ** Synopsis: key=r[P3@P4]
003924  **
003925  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
003926  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
003927  ** record.
003928  **
003929  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
003930  ** is a prefix of any entry in P1 then a jump is made to P2 and
003931  ** P1 is left pointing at the matching entry.
003932  **
003933  ** This operation leaves the cursor in a state where it can be
003934  ** advanced in the forward direction.  The Next instruction will work,
003935  ** but not the Prev instruction.
003936  **
003937  ** See also: NotFound, NoConflict, NotExists. SeekGe
003938  */
003939  /* Opcode: NotFound P1 P2 P3 P4 *
003940  ** Synopsis: key=r[P3@P4]
003941  **
003942  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
003943  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
003944  ** record.
003945  ** 
003946  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
003947  ** is not the prefix of any entry in P1 then a jump is made to P2.  If P1 
003948  ** does contain an entry whose prefix matches the P3/P4 record then control
003949  ** falls through to the next instruction and P1 is left pointing at the
003950  ** matching entry.
003951  **
003952  ** This operation leaves the cursor in a state where it cannot be
003953  ** advanced in either direction.  In other words, the Next and Prev
003954  ** opcodes do not work after this operation.
003955  **
003956  ** See also: Found, NotExists, NoConflict
003957  */
003958  /* Opcode: NoConflict P1 P2 P3 P4 *
003959  ** Synopsis: key=r[P3@P4]
003960  **
003961  ** If P4==0 then register P3 holds a blob constructed by MakeRecord.  If
003962  ** P4>0 then register P3 is the first of P4 registers that form an unpacked
003963  ** record.
003964  ** 
003965  ** Cursor P1 is on an index btree.  If the record identified by P3 and P4
003966  ** contains any NULL value, jump immediately to P2.  If all terms of the
003967  ** record are not-NULL then a check is done to determine if any row in the
003968  ** P1 index btree has a matching key prefix.  If there are no matches, jump
003969  ** immediately to P2.  If there is a match, fall through and leave the P1
003970  ** cursor pointing to the matching row.
003971  **
003972  ** This opcode is similar to OP_NotFound with the exceptions that the
003973  ** branch is always taken if any part of the search key input is NULL.
003974  **
003975  ** This operation leaves the cursor in a state where it cannot be
003976  ** advanced in either direction.  In other words, the Next and Prev
003977  ** opcodes do not work after this operation.
003978  **
003979  ** See also: NotFound, Found, NotExists
003980  */
003981  case OP_NoConflict:     /* jump, in3 */
003982  case OP_NotFound:       /* jump, in3 */
003983  case OP_Found: {        /* jump, in3 */
003984    int alreadyExists;
003985    int takeJump;
003986    int ii;
003987    VdbeCursor *pC;
003988    int res;
003989    UnpackedRecord *pFree;
003990    UnpackedRecord *pIdxKey;
003991    UnpackedRecord r;
003992  
003993  #ifdef SQLITE_TEST
003994    if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
003995  #endif
003996  
003997    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
003998    assert( pOp->p4type==P4_INT32 );
003999    pC = p->apCsr[pOp->p1];
004000    assert( pC!=0 );
004001  #ifdef SQLITE_DEBUG
004002    pC->seekOp = pOp->opcode;
004003  #endif
004004    pIn3 = &aMem[pOp->p3];
004005    assert( pC->eCurType==CURTYPE_BTREE );
004006    assert( pC->uc.pCursor!=0 );
004007    assert( pC->isTable==0 );
004008    if( pOp->p4.i>0 ){
004009      r.pKeyInfo = pC->pKeyInfo;
004010      r.nField = (u16)pOp->p4.i;
004011      r.aMem = pIn3;
004012  #ifdef SQLITE_DEBUG
004013      for(ii=0; ii<r.nField; ii++){
004014        assert( memIsValid(&r.aMem[ii]) );
004015        assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
004016        if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
004017      }
004018  #endif
004019      pIdxKey = &r;
004020      pFree = 0;
004021    }else{
004022      pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
004023      if( pIdxKey==0 ) goto no_mem;
004024      assert( pIn3->flags & MEM_Blob );
004025      (void)ExpandBlob(pIn3);
004026      sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
004027    }
004028    pIdxKey->default_rc = 0;
004029    takeJump = 0;
004030    if( pOp->opcode==OP_NoConflict ){
004031      /* For the OP_NoConflict opcode, take the jump if any of the
004032      ** input fields are NULL, since any key with a NULL will not
004033      ** conflict */
004034      for(ii=0; ii<pIdxKey->nField; ii++){
004035        if( pIdxKey->aMem[ii].flags & MEM_Null ){
004036          takeJump = 1;
004037          break;
004038        }
004039      }
004040    }
004041    rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
004042    if( pFree ) sqlite3DbFree(db, pFree);
004043    if( rc!=SQLITE_OK ){
004044      goto abort_due_to_error;
004045    }
004046    pC->seekResult = res;
004047    alreadyExists = (res==0);
004048    pC->nullRow = 1-alreadyExists;
004049    pC->deferredMoveto = 0;
004050    pC->cacheStatus = CACHE_STALE;
004051    if( pOp->opcode==OP_Found ){
004052      VdbeBranchTaken(alreadyExists!=0,2);
004053      if( alreadyExists ) goto jump_to_p2;
004054    }else{
004055      VdbeBranchTaken(takeJump||alreadyExists==0,2);
004056      if( takeJump || !alreadyExists ) goto jump_to_p2;
004057    }
004058    break;
004059  }
004060  
004061  /* Opcode: SeekRowid P1 P2 P3 * *
004062  ** Synopsis: intkey=r[P3]
004063  **
004064  ** P1 is the index of a cursor open on an SQL table btree (with integer
004065  ** keys).  If register P3 does not contain an integer or if P1 does not
004066  ** contain a record with rowid P3 then jump immediately to P2.  
004067  ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
004068  ** a record with rowid P3 then 
004069  ** leave the cursor pointing at that record and fall through to the next
004070  ** instruction.
004071  **
004072  ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
004073  ** the P3 register must be guaranteed to contain an integer value.  With this
004074  ** opcode, register P3 might not contain an integer.
004075  **
004076  ** The OP_NotFound opcode performs the same operation on index btrees
004077  ** (with arbitrary multi-value keys).
004078  **
004079  ** This opcode leaves the cursor in a state where it cannot be advanced
004080  ** in either direction.  In other words, the Next and Prev opcodes will
004081  ** not work following this opcode.
004082  **
004083  ** See also: Found, NotFound, NoConflict, SeekRowid
004084  */
004085  /* Opcode: NotExists P1 P2 P3 * *
004086  ** Synopsis: intkey=r[P3]
004087  **
004088  ** P1 is the index of a cursor open on an SQL table btree (with integer
004089  ** keys).  P3 is an integer rowid.  If P1 does not contain a record with
004090  ** rowid P3 then jump immediately to P2.  Or, if P2 is 0, raise an
004091  ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then 
004092  ** leave the cursor pointing at that record and fall through to the next
004093  ** instruction.
004094  **
004095  ** The OP_SeekRowid opcode performs the same operation but also allows the
004096  ** P3 register to contain a non-integer value, in which case the jump is
004097  ** always taken.  This opcode requires that P3 always contain an integer.
004098  **
004099  ** The OP_NotFound opcode performs the same operation on index btrees
004100  ** (with arbitrary multi-value keys).
004101  **
004102  ** This opcode leaves the cursor in a state where it cannot be advanced
004103  ** in either direction.  In other words, the Next and Prev opcodes will
004104  ** not work following this opcode.
004105  **
004106  ** See also: Found, NotFound, NoConflict, SeekRowid
004107  */
004108  case OP_SeekRowid: {        /* jump, in3 */
004109    VdbeCursor *pC;
004110    BtCursor *pCrsr;
004111    int res;
004112    u64 iKey;
004113  
004114    pIn3 = &aMem[pOp->p3];
004115    if( (pIn3->flags & MEM_Int)==0 ){
004116      applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
004117      if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
004118    }
004119    /* Fall through into OP_NotExists */
004120  case OP_NotExists:          /* jump, in3 */
004121    pIn3 = &aMem[pOp->p3];
004122    assert( pIn3->flags & MEM_Int );
004123    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004124    pC = p->apCsr[pOp->p1];
004125    assert( pC!=0 );
004126  #ifdef SQLITE_DEBUG
004127    pC->seekOp = 0;
004128  #endif
004129    assert( pC->isTable );
004130    assert( pC->eCurType==CURTYPE_BTREE );
004131    pCrsr = pC->uc.pCursor;
004132    assert( pCrsr!=0 );
004133    res = 0;
004134    iKey = pIn3->u.i;
004135    rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
004136    assert( rc==SQLITE_OK || res==0 );
004137    pC->movetoTarget = iKey;  /* Used by OP_Delete */
004138    pC->nullRow = 0;
004139    pC->cacheStatus = CACHE_STALE;
004140    pC->deferredMoveto = 0;
004141    VdbeBranchTaken(res!=0,2);
004142    pC->seekResult = res;
004143    if( res!=0 ){
004144      assert( rc==SQLITE_OK );
004145      if( pOp->p2==0 ){
004146        rc = SQLITE_CORRUPT_BKPT;
004147      }else{
004148        goto jump_to_p2;
004149      }
004150    }
004151    if( rc ) goto abort_due_to_error;
004152    break;
004153  }
004154  
004155  /* Opcode: Sequence P1 P2 * * *
004156  ** Synopsis: r[P2]=cursor[P1].ctr++
004157  **
004158  ** Find the next available sequence number for cursor P1.
004159  ** Write the sequence number into register P2.
004160  ** The sequence number on the cursor is incremented after this
004161  ** instruction.  
004162  */
004163  case OP_Sequence: {           /* out2 */
004164    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004165    assert( p->apCsr[pOp->p1]!=0 );
004166    assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
004167    pOut = out2Prerelease(p, pOp);
004168    pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
004169    break;
004170  }
004171  
004172  
004173  /* Opcode: NewRowid P1 P2 P3 * *
004174  ** Synopsis: r[P2]=rowid
004175  **
004176  ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
004177  ** The record number is not previously used as a key in the database
004178  ** table that cursor P1 points to.  The new record number is written
004179  ** written to register P2.
004180  **
004181  ** If P3>0 then P3 is a register in the root frame of this VDBE that holds 
004182  ** the largest previously generated record number. No new record numbers are
004183  ** allowed to be less than this value. When this value reaches its maximum, 
004184  ** an SQLITE_FULL error is generated. The P3 register is updated with the '
004185  ** generated record number. This P3 mechanism is used to help implement the
004186  ** AUTOINCREMENT feature.
004187  */
004188  case OP_NewRowid: {           /* out2 */
004189    i64 v;                 /* The new rowid */
004190    VdbeCursor *pC;        /* Cursor of table to get the new rowid */
004191    int res;               /* Result of an sqlite3BtreeLast() */
004192    int cnt;               /* Counter to limit the number of searches */
004193    Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
004194    VdbeFrame *pFrame;     /* Root frame of VDBE */
004195  
004196    v = 0;
004197    res = 0;
004198    pOut = out2Prerelease(p, pOp);
004199    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004200    pC = p->apCsr[pOp->p1];
004201    assert( pC!=0 );
004202    assert( pC->eCurType==CURTYPE_BTREE );
004203    assert( pC->uc.pCursor!=0 );
004204    {
004205      /* The next rowid or record number (different terms for the same
004206      ** thing) is obtained in a two-step algorithm.
004207      **
004208      ** First we attempt to find the largest existing rowid and add one
004209      ** to that.  But if the largest existing rowid is already the maximum
004210      ** positive integer, we have to fall through to the second
004211      ** probabilistic algorithm
004212      **
004213      ** The second algorithm is to select a rowid at random and see if
004214      ** it already exists in the table.  If it does not exist, we have
004215      ** succeeded.  If the random rowid does exist, we select a new one
004216      ** and try again, up to 100 times.
004217      */
004218      assert( pC->isTable );
004219  
004220  #ifdef SQLITE_32BIT_ROWID
004221  #   define MAX_ROWID 0x7fffffff
004222  #else
004223      /* Some compilers complain about constants of the form 0x7fffffffffffffff.
004224      ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
004225      ** to provide the constant while making all compilers happy.
004226      */
004227  #   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
004228  #endif
004229  
004230      if( !pC->useRandomRowid ){
004231        rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
004232        if( rc!=SQLITE_OK ){
004233          goto abort_due_to_error;
004234        }
004235        if( res ){
004236          v = 1;   /* IMP: R-61914-48074 */
004237        }else{
004238          assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
004239          v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
004240          if( v>=MAX_ROWID ){
004241            pC->useRandomRowid = 1;
004242          }else{
004243            v++;   /* IMP: R-29538-34987 */
004244          }
004245        }
004246      }
004247  
004248  #ifndef SQLITE_OMIT_AUTOINCREMENT
004249      if( pOp->p3 ){
004250        /* Assert that P3 is a valid memory cell. */
004251        assert( pOp->p3>0 );
004252        if( p->pFrame ){
004253          for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
004254          /* Assert that P3 is a valid memory cell. */
004255          assert( pOp->p3<=pFrame->nMem );
004256          pMem = &pFrame->aMem[pOp->p3];
004257        }else{
004258          /* Assert that P3 is a valid memory cell. */
004259          assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
004260          pMem = &aMem[pOp->p3];
004261          memAboutToChange(p, pMem);
004262        }
004263        assert( memIsValid(pMem) );
004264  
004265        REGISTER_TRACE(pOp->p3, pMem);
004266        sqlite3VdbeMemIntegerify(pMem);
004267        assert( (pMem->flags & MEM_Int)!=0 );  /* mem(P3) holds an integer */
004268        if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
004269          rc = SQLITE_FULL;   /* IMP: R-17817-00630 */
004270          goto abort_due_to_error;
004271        }
004272        if( v<pMem->u.i+1 ){
004273          v = pMem->u.i + 1;
004274        }
004275        pMem->u.i = v;
004276      }
004277  #endif
004278      if( pC->useRandomRowid ){
004279        /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
004280        ** largest possible integer (9223372036854775807) then the database
004281        ** engine starts picking positive candidate ROWIDs at random until
004282        ** it finds one that is not previously used. */
004283        assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
004284                               ** an AUTOINCREMENT table. */
004285        cnt = 0;
004286        do{
004287          sqlite3_randomness(sizeof(v), &v);
004288          v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
004289        }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
004290                                                   0, &res))==SQLITE_OK)
004291              && (res==0)
004292              && (++cnt<100));
004293        if( rc ) goto abort_due_to_error;
004294        if( res==0 ){
004295          rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
004296          goto abort_due_to_error;
004297        }
004298        assert( v>0 );  /* EV: R-40812-03570 */
004299      }
004300      pC->deferredMoveto = 0;
004301      pC->cacheStatus = CACHE_STALE;
004302    }
004303    pOut->u.i = v;
004304    break;
004305  }
004306  
004307  /* Opcode: Insert P1 P2 P3 P4 P5
004308  ** Synopsis: intkey=r[P3] data=r[P2]
004309  **
004310  ** Write an entry into the table of cursor P1.  A new entry is
004311  ** created if it doesn't already exist or the data for an existing
004312  ** entry is overwritten.  The data is the value MEM_Blob stored in register
004313  ** number P2. The key is stored in register P3. The key must
004314  ** be a MEM_Int.
004315  **
004316  ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
004317  ** incremented (otherwise not).  If the OPFLAG_LASTROWID flag of P5 is set,
004318  ** then rowid is stored for subsequent return by the
004319  ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
004320  **
004321  ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
004322  ** run faster by avoiding an unnecessary seek on cursor P1.  However,
004323  ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
004324  ** seeks on the cursor or if the most recent seek used a key equal to P3.
004325  **
004326  ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
004327  ** UPDATE operation.  Otherwise (if the flag is clear) then this opcode
004328  ** is part of an INSERT operation.  The difference is only important to
004329  ** the update hook.
004330  **
004331  ** Parameter P4 may point to a Table structure, or may be NULL. If it is 
004332  ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked 
004333  ** following a successful insert.
004334  **
004335  ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
004336  ** allocated, then ownership of P2 is transferred to the pseudo-cursor
004337  ** and register P2 becomes ephemeral.  If the cursor is changed, the
004338  ** value of register P2 will then change.  Make sure this does not
004339  ** cause any problems.)
004340  **
004341  ** This instruction only works on tables.  The equivalent instruction
004342  ** for indices is OP_IdxInsert.
004343  */
004344  /* Opcode: InsertInt P1 P2 P3 P4 P5
004345  ** Synopsis: intkey=P3 data=r[P2]
004346  **
004347  ** This works exactly like OP_Insert except that the key is the
004348  ** integer value P3, not the value of the integer stored in register P3.
004349  */
004350  case OP_Insert: 
004351  case OP_InsertInt: {
004352    Mem *pData;       /* MEM cell holding data for the record to be inserted */
004353    Mem *pKey;        /* MEM cell holding key  for the record */
004354    VdbeCursor *pC;   /* Cursor to table into which insert is written */
004355    int seekResult;   /* Result of prior seek or 0 if no USESEEKRESULT flag */
004356    const char *zDb;  /* database name - used by the update hook */
004357    Table *pTab;      /* Table structure - used by update and pre-update hooks */
004358    int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
004359    BtreePayload x;   /* Payload to be inserted */
004360  
004361    op = 0;
004362    pData = &aMem[pOp->p2];
004363    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004364    assert( memIsValid(pData) );
004365    pC = p->apCsr[pOp->p1];
004366    assert( pC!=0 );
004367    assert( pC->eCurType==CURTYPE_BTREE );
004368    assert( pC->uc.pCursor!=0 );
004369    assert( pC->isTable );
004370    assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
004371    REGISTER_TRACE(pOp->p2, pData);
004372  
004373    if( pOp->opcode==OP_Insert ){
004374      pKey = &aMem[pOp->p3];
004375      assert( pKey->flags & MEM_Int );
004376      assert( memIsValid(pKey) );
004377      REGISTER_TRACE(pOp->p3, pKey);
004378      x.nKey = pKey->u.i;
004379    }else{
004380      assert( pOp->opcode==OP_InsertInt );
004381      x.nKey = pOp->p3;
004382    }
004383  
004384    if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
004385      assert( pC->isTable );
004386      assert( pC->iDb>=0 );
004387      zDb = db->aDb[pC->iDb].zDbSName;
004388      pTab = pOp->p4.pTab;
004389      assert( HasRowid(pTab) );
004390      op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
004391    }else{
004392      pTab = 0; /* Not needed.  Silence a comiler warning. */
004393      zDb = 0;  /* Not needed.  Silence a compiler warning. */
004394    }
004395  
004396  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
004397    /* Invoke the pre-update hook, if any */
004398    if( db->xPreUpdateCallback 
004399     && pOp->p4type==P4_TABLE
004400     && !(pOp->p5 & OPFLAG_ISUPDATE)
004401    ){
004402      sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey, pOp->p2);
004403    }
004404  #endif
004405  
004406    if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
004407    if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = x.nKey;
004408    if( pData->flags & MEM_Null ){
004409      x.pData = 0;
004410      x.nData = 0;
004411    }else{
004412      assert( pData->flags & (MEM_Blob|MEM_Str) );
004413      x.pData = pData->z;
004414      x.nData = pData->n;
004415    }
004416    seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
004417    if( pData->flags & MEM_Zero ){
004418      x.nZero = pData->u.nZero;
004419    }else{
004420      x.nZero = 0;
004421    }
004422    x.pKey = 0;
004423    rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
004424                            (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
004425    );
004426    pC->deferredMoveto = 0;
004427    pC->cacheStatus = CACHE_STALE;
004428  
004429    /* Invoke the update-hook if required. */
004430    if( rc ) goto abort_due_to_error;
004431    if( db->xUpdateCallback && op ){
004432      db->xUpdateCallback(db->pUpdateArg, op, zDb, pTab->zName, x.nKey);
004433    }
004434    break;
004435  }
004436  
004437  /* Opcode: Delete P1 P2 P3 P4 P5
004438  **
004439  ** Delete the record at which the P1 cursor is currently pointing.
004440  **
004441  ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
004442  ** the cursor will be left pointing at  either the next or the previous
004443  ** record in the table. If it is left pointing at the next record, then
004444  ** the next Next instruction will be a no-op. As a result, in this case
004445  ** it is ok to delete a record from within a Next loop. If 
004446  ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
004447  ** left in an undefined state.
004448  **
004449  ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
004450  ** delete one of several associated with deleting a table row and all its
004451  ** associated index entries.  Exactly one of those deletes is the "primary"
004452  ** delete.  The others are all on OPFLAG_FORDELETE cursors or else are
004453  ** marked with the AUXDELETE flag.
004454  **
004455  ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
004456  ** change count is incremented (otherwise not).
004457  **
004458  ** P1 must not be pseudo-table.  It has to be a real table with
004459  ** multiple rows.
004460  **
004461  ** If P4 is not NULL then it points to a Table object. In this case either 
004462  ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
004463  ** have been positioned using OP_NotFound prior to invoking this opcode in 
004464  ** this case. Specifically, if one is configured, the pre-update hook is 
004465  ** invoked if P4 is not NULL. The update-hook is invoked if one is configured, 
004466  ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
004467  **
004468  ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
004469  ** of the memory cell that contains the value that the rowid of the row will
004470  ** be set to by the update.
004471  */
004472  case OP_Delete: {
004473    VdbeCursor *pC;
004474    const char *zDb;
004475    Table *pTab;
004476    int opflags;
004477  
004478    opflags = pOp->p2;
004479    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004480    pC = p->apCsr[pOp->p1];
004481    assert( pC!=0 );
004482    assert( pC->eCurType==CURTYPE_BTREE );
004483    assert( pC->uc.pCursor!=0 );
004484    assert( pC->deferredMoveto==0 );
004485  
004486  #ifdef SQLITE_DEBUG
004487    if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
004488      /* If p5 is zero, the seek operation that positioned the cursor prior to
004489      ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
004490      ** the row that is being deleted */
004491      i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
004492      assert( pC->movetoTarget==iKey );
004493    }
004494  #endif
004495  
004496    /* If the update-hook or pre-update-hook will be invoked, set zDb to
004497    ** the name of the db to pass as to it. Also set local pTab to a copy
004498    ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
004499    ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set 
004500    ** VdbeCursor.movetoTarget to the current rowid.  */
004501    if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
004502      assert( pC->iDb>=0 );
004503      assert( pOp->p4.pTab!=0 );
004504      zDb = db->aDb[pC->iDb].zDbSName;
004505      pTab = pOp->p4.pTab;
004506      if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
004507        pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
004508      }
004509    }else{
004510      zDb = 0;   /* Not needed.  Silence a compiler warning. */
004511      pTab = 0;  /* Not needed.  Silence a compiler warning. */
004512    }
004513  
004514  #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
004515    /* Invoke the pre-update-hook if required. */
004516    if( db->xPreUpdateCallback && pOp->p4.pTab && HasRowid(pTab) ){
004517      assert( !(opflags & OPFLAG_ISUPDATE) || (aMem[pOp->p3].flags & MEM_Int) );
004518      sqlite3VdbePreUpdateHook(p, pC,
004519          (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE, 
004520          zDb, pTab, pC->movetoTarget,
004521          pOp->p3
004522      );
004523    }
004524    if( opflags & OPFLAG_ISNOOP ) break;
004525  #endif
004526   
004527    /* Only flags that can be set are SAVEPOISTION and AUXDELETE */ 
004528    assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
004529    assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
004530    assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
004531  
004532  #ifdef SQLITE_DEBUG
004533    if( p->pFrame==0 ){
004534      if( pC->isEphemeral==0
004535          && (pOp->p5 & OPFLAG_AUXDELETE)==0
004536          && (pC->wrFlag & OPFLAG_FORDELETE)==0
004537        ){
004538        nExtraDelete++;
004539      }
004540      if( pOp->p2 & OPFLAG_NCHANGE ){
004541        nExtraDelete--;
004542      }
004543    }
004544  #endif
004545  
004546    rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
004547    pC->cacheStatus = CACHE_STALE;
004548    pC->seekResult = 0;
004549    if( rc ) goto abort_due_to_error;
004550  
004551    /* Invoke the update-hook if required. */
004552    if( opflags & OPFLAG_NCHANGE ){
004553      p->nChange++;
004554      if( db->xUpdateCallback && HasRowid(pTab) ){
004555        db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
004556            pC->movetoTarget);
004557        assert( pC->iDb>=0 );
004558      }
004559    }
004560  
004561    break;
004562  }
004563  /* Opcode: ResetCount * * * * *
004564  **
004565  ** The value of the change counter is copied to the database handle
004566  ** change counter (returned by subsequent calls to sqlite3_changes()).
004567  ** Then the VMs internal change counter resets to 0.
004568  ** This is used by trigger programs.
004569  */
004570  case OP_ResetCount: {
004571    sqlite3VdbeSetChanges(db, p->nChange);
004572    p->nChange = 0;
004573    break;
004574  }
004575  
004576  /* Opcode: SorterCompare P1 P2 P3 P4
004577  ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
004578  **
004579  ** P1 is a sorter cursor. This instruction compares a prefix of the
004580  ** record blob in register P3 against a prefix of the entry that 
004581  ** the sorter cursor currently points to.  Only the first P4 fields
004582  ** of r[P3] and the sorter record are compared.
004583  **
004584  ** If either P3 or the sorter contains a NULL in one of their significant
004585  ** fields (not counting the P4 fields at the end which are ignored) then
004586  ** the comparison is assumed to be equal.
004587  **
004588  ** Fall through to next instruction if the two records compare equal to
004589  ** each other.  Jump to P2 if they are different.
004590  */
004591  case OP_SorterCompare: {
004592    VdbeCursor *pC;
004593    int res;
004594    int nKeyCol;
004595  
004596    pC = p->apCsr[pOp->p1];
004597    assert( isSorter(pC) );
004598    assert( pOp->p4type==P4_INT32 );
004599    pIn3 = &aMem[pOp->p3];
004600    nKeyCol = pOp->p4.i;
004601    res = 0;
004602    rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
004603    VdbeBranchTaken(res!=0,2);
004604    if( rc ) goto abort_due_to_error;
004605    if( res ) goto jump_to_p2;
004606    break;
004607  };
004608  
004609  /* Opcode: SorterData P1 P2 P3 * *
004610  ** Synopsis: r[P2]=data
004611  **
004612  ** Write into register P2 the current sorter data for sorter cursor P1.
004613  ** Then clear the column header cache on cursor P3.
004614  **
004615  ** This opcode is normally use to move a record out of the sorter and into
004616  ** a register that is the source for a pseudo-table cursor created using
004617  ** OpenPseudo.  That pseudo-table cursor is the one that is identified by
004618  ** parameter P3.  Clearing the P3 column cache as part of this opcode saves
004619  ** us from having to issue a separate NullRow instruction to clear that cache.
004620  */
004621  case OP_SorterData: {
004622    VdbeCursor *pC;
004623  
004624    pOut = &aMem[pOp->p2];
004625    pC = p->apCsr[pOp->p1];
004626    assert( isSorter(pC) );
004627    rc = sqlite3VdbeSorterRowkey(pC, pOut);
004628    assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
004629    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004630    if( rc ) goto abort_due_to_error;
004631    p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
004632    break;
004633  }
004634  
004635  /* Opcode: RowData P1 P2 * * *
004636  ** Synopsis: r[P2]=data
004637  **
004638  ** Write into register P2 the complete row content for the row at 
004639  ** which cursor P1 is currently pointing.
004640  ** There is no interpretation of the data.  
004641  ** It is just copied onto the P2 register exactly as 
004642  ** it is found in the database file.
004643  **
004644  ** If cursor P1 is an index, then the content is the key of the row.
004645  ** If cursor P2 is a table, then the content extracted is the data.
004646  **
004647  ** If the P1 cursor must be pointing to a valid row (not a NULL row)
004648  ** of a real table, not a pseudo-table.
004649  */
004650  case OP_RowData: {
004651    VdbeCursor *pC;
004652    BtCursor *pCrsr;
004653    u32 n;
004654  
004655    pOut = &aMem[pOp->p2];
004656    memAboutToChange(p, pOut);
004657  
004658    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004659    pC = p->apCsr[pOp->p1];
004660    assert( pC!=0 );
004661    assert( pC->eCurType==CURTYPE_BTREE );
004662    assert( isSorter(pC)==0 );
004663    assert( pC->nullRow==0 );
004664    assert( pC->uc.pCursor!=0 );
004665    pCrsr = pC->uc.pCursor;
004666  
004667    /* The OP_RowData opcodes always follow OP_NotExists or
004668    ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
004669    ** that might invalidate the cursor.
004670    ** If this where not the case, on of the following assert()s
004671    ** would fail.  Should this ever change (because of changes in the code
004672    ** generator) then the fix would be to insert a call to
004673    ** sqlite3VdbeCursorMoveto().
004674    */
004675    assert( pC->deferredMoveto==0 );
004676    assert( sqlite3BtreeCursorIsValid(pCrsr) );
004677  #if 0  /* Not required due to the previous to assert() statements */
004678    rc = sqlite3VdbeCursorMoveto(pC);
004679    if( rc!=SQLITE_OK ) goto abort_due_to_error;
004680  #endif
004681  
004682    n = sqlite3BtreePayloadSize(pCrsr);
004683    if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
004684      goto too_big;
004685    }
004686    testcase( n==0 );
004687    if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
004688      goto no_mem;
004689    }
004690    pOut->n = n;
004691    MemSetTypeFlag(pOut, MEM_Blob);
004692    rc = sqlite3BtreePayload(pCrsr, 0, n, pOut->z);
004693    if( rc ) goto abort_due_to_error;
004694    pOut->enc = SQLITE_UTF8;  /* In case the blob is ever cast to text */
004695    UPDATE_MAX_BLOBSIZE(pOut);
004696    REGISTER_TRACE(pOp->p2, pOut);
004697    break;
004698  }
004699  
004700  /* Opcode: Rowid P1 P2 * * *
004701  ** Synopsis: r[P2]=rowid
004702  **
004703  ** Store in register P2 an integer which is the key of the table entry that
004704  ** P1 is currently point to.
004705  **
004706  ** P1 can be either an ordinary table or a virtual table.  There used to
004707  ** be a separate OP_VRowid opcode for use with virtual tables, but this
004708  ** one opcode now works for both table types.
004709  */
004710  case OP_Rowid: {                 /* out2 */
004711    VdbeCursor *pC;
004712    i64 v;
004713    sqlite3_vtab *pVtab;
004714    const sqlite3_module *pModule;
004715  
004716    pOut = out2Prerelease(p, pOp);
004717    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004718    pC = p->apCsr[pOp->p1];
004719    assert( pC!=0 );
004720    assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
004721    if( pC->nullRow ){
004722      pOut->flags = MEM_Null;
004723      break;
004724    }else if( pC->deferredMoveto ){
004725      v = pC->movetoTarget;
004726  #ifndef SQLITE_OMIT_VIRTUALTABLE
004727    }else if( pC->eCurType==CURTYPE_VTAB ){
004728      assert( pC->uc.pVCur!=0 );
004729      pVtab = pC->uc.pVCur->pVtab;
004730      pModule = pVtab->pModule;
004731      assert( pModule->xRowid );
004732      rc = pModule->xRowid(pC->uc.pVCur, &v);
004733      sqlite3VtabImportErrmsg(p, pVtab);
004734      if( rc ) goto abort_due_to_error;
004735  #endif /* SQLITE_OMIT_VIRTUALTABLE */
004736    }else{
004737      assert( pC->eCurType==CURTYPE_BTREE );
004738      assert( pC->uc.pCursor!=0 );
004739      rc = sqlite3VdbeCursorRestore(pC);
004740      if( rc ) goto abort_due_to_error;
004741      if( pC->nullRow ){
004742        pOut->flags = MEM_Null;
004743        break;
004744      }
004745      v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
004746    }
004747    pOut->u.i = v;
004748    break;
004749  }
004750  
004751  /* Opcode: NullRow P1 * * * *
004752  **
004753  ** Move the cursor P1 to a null row.  Any OP_Column operations
004754  ** that occur while the cursor is on the null row will always
004755  ** write a NULL.
004756  */
004757  case OP_NullRow: {
004758    VdbeCursor *pC;
004759  
004760    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004761    pC = p->apCsr[pOp->p1];
004762    assert( pC!=0 );
004763    pC->nullRow = 1;
004764    pC->cacheStatus = CACHE_STALE;
004765    if( pC->eCurType==CURTYPE_BTREE ){
004766      assert( pC->uc.pCursor!=0 );
004767      sqlite3BtreeClearCursor(pC->uc.pCursor);
004768    }
004769    break;
004770  }
004771  
004772  /* Opcode: Last P1 P2 P3 * *
004773  **
004774  ** The next use of the Rowid or Column or Prev instruction for P1 
004775  ** will refer to the last entry in the database table or index.
004776  ** If the table or index is empty and P2>0, then jump immediately to P2.
004777  ** If P2 is 0 or if the table or index is not empty, fall through
004778  ** to the following instruction.
004779  **
004780  ** This opcode leaves the cursor configured to move in reverse order,
004781  ** from the end toward the beginning.  In other words, the cursor is
004782  ** configured to use Prev, not Next.
004783  **
004784  ** If P3 is -1, then the cursor is positioned at the end of the btree
004785  ** for the purpose of appending a new entry onto the btree.  In that
004786  ** case P2 must be 0.  It is assumed that the cursor is used only for
004787  ** appending and so if the cursor is valid, then the cursor must already
004788  ** be pointing at the end of the btree and so no changes are made to
004789  ** the cursor.
004790  */
004791  case OP_Last: {        /* jump */
004792    VdbeCursor *pC;
004793    BtCursor *pCrsr;
004794    int res;
004795  
004796    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004797    pC = p->apCsr[pOp->p1];
004798    assert( pC!=0 );
004799    assert( pC->eCurType==CURTYPE_BTREE );
004800    pCrsr = pC->uc.pCursor;
004801    res = 0;
004802    assert( pCrsr!=0 );
004803    pC->seekResult = pOp->p3;
004804  #ifdef SQLITE_DEBUG
004805    pC->seekOp = OP_Last;
004806  #endif
004807    if( pOp->p3==0 || !sqlite3BtreeCursorIsValidNN(pCrsr) ){
004808      rc = sqlite3BtreeLast(pCrsr, &res);
004809      pC->nullRow = (u8)res;
004810      pC->deferredMoveto = 0;
004811      pC->cacheStatus = CACHE_STALE;
004812      if( rc ) goto abort_due_to_error;
004813      if( pOp->p2>0 ){
004814        VdbeBranchTaken(res!=0,2);
004815        if( res ) goto jump_to_p2;
004816      }
004817    }else{
004818      assert( pOp->p2==0 );
004819    }
004820    break;
004821  }
004822  
004823  
004824  /* Opcode: SorterSort P1 P2 * * *
004825  **
004826  ** After all records have been inserted into the Sorter object
004827  ** identified by P1, invoke this opcode to actually do the sorting.
004828  ** Jump to P2 if there are no records to be sorted.
004829  **
004830  ** This opcode is an alias for OP_Sort and OP_Rewind that is used
004831  ** for Sorter objects.
004832  */
004833  /* Opcode: Sort P1 P2 * * *
004834  **
004835  ** This opcode does exactly the same thing as OP_Rewind except that
004836  ** it increments an undocumented global variable used for testing.
004837  **
004838  ** Sorting is accomplished by writing records into a sorting index,
004839  ** then rewinding that index and playing it back from beginning to
004840  ** end.  We use the OP_Sort opcode instead of OP_Rewind to do the
004841  ** rewinding so that the global variable will be incremented and
004842  ** regression tests can determine whether or not the optimizer is
004843  ** correctly optimizing out sorts.
004844  */
004845  case OP_SorterSort:    /* jump */
004846  case OP_Sort: {        /* jump */
004847  #ifdef SQLITE_TEST
004848    sqlite3_sort_count++;
004849    sqlite3_search_count--;
004850  #endif
004851    p->aCounter[SQLITE_STMTSTATUS_SORT]++;
004852    /* Fall through into OP_Rewind */
004853  }
004854  /* Opcode: Rewind P1 P2 * * *
004855  **
004856  ** The next use of the Rowid or Column or Next instruction for P1 
004857  ** will refer to the first entry in the database table or index.
004858  ** If the table or index is empty, jump immediately to P2.
004859  ** If the table or index is not empty, fall through to the following 
004860  ** instruction.
004861  **
004862  ** This opcode leaves the cursor configured to move in forward order,
004863  ** from the beginning toward the end.  In other words, the cursor is
004864  ** configured to use Next, not Prev.
004865  */
004866  case OP_Rewind: {        /* jump */
004867    VdbeCursor *pC;
004868    BtCursor *pCrsr;
004869    int res;
004870  
004871    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004872    pC = p->apCsr[pOp->p1];
004873    assert( pC!=0 );
004874    assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
004875    res = 1;
004876  #ifdef SQLITE_DEBUG
004877    pC->seekOp = OP_Rewind;
004878  #endif
004879    if( isSorter(pC) ){
004880      rc = sqlite3VdbeSorterRewind(pC, &res);
004881    }else{
004882      assert( pC->eCurType==CURTYPE_BTREE );
004883      pCrsr = pC->uc.pCursor;
004884      assert( pCrsr );
004885      rc = sqlite3BtreeFirst(pCrsr, &res);
004886      pC->deferredMoveto = 0;
004887      pC->cacheStatus = CACHE_STALE;
004888    }
004889    if( rc ) goto abort_due_to_error;
004890    pC->nullRow = (u8)res;
004891    assert( pOp->p2>0 && pOp->p2<p->nOp );
004892    VdbeBranchTaken(res!=0,2);
004893    if( res ) goto jump_to_p2;
004894    break;
004895  }
004896  
004897  /* Opcode: Next P1 P2 P3 P4 P5
004898  **
004899  ** Advance cursor P1 so that it points to the next key/data pair in its
004900  ** table or index.  If there are no more key/value pairs then fall through
004901  ** to the following instruction.  But if the cursor advance was successful,
004902  ** jump immediately to P2.
004903  **
004904  ** The Next opcode is only valid following an SeekGT, SeekGE, or
004905  ** OP_Rewind opcode used to position the cursor.  Next is not allowed
004906  ** to follow SeekLT, SeekLE, or OP_Last.
004907  **
004908  ** The P1 cursor must be for a real table, not a pseudo-table.  P1 must have
004909  ** been opened prior to this opcode or the program will segfault.
004910  **
004911  ** The P3 value is a hint to the btree implementation. If P3==1, that
004912  ** means P1 is an SQL index and that this instruction could have been
004913  ** omitted if that index had been unique.  P3 is usually 0.  P3 is
004914  ** always either 0 or 1.
004915  **
004916  ** P4 is always of type P4_ADVANCE. The function pointer points to
004917  ** sqlite3BtreeNext().
004918  **
004919  ** If P5 is positive and the jump is taken, then event counter
004920  ** number P5-1 in the prepared statement is incremented.
004921  **
004922  ** See also: Prev, NextIfOpen
004923  */
004924  /* Opcode: NextIfOpen P1 P2 P3 P4 P5
004925  **
004926  ** This opcode works just like Next except that if cursor P1 is not
004927  ** open it behaves a no-op.
004928  */
004929  /* Opcode: Prev P1 P2 P3 P4 P5
004930  **
004931  ** Back up cursor P1 so that it points to the previous key/data pair in its
004932  ** table or index.  If there is no previous key/value pairs then fall through
004933  ** to the following instruction.  But if the cursor backup was successful,
004934  ** jump immediately to P2.
004935  **
004936  **
004937  ** The Prev opcode is only valid following an SeekLT, SeekLE, or
004938  ** OP_Last opcode used to position the cursor.  Prev is not allowed
004939  ** to follow SeekGT, SeekGE, or OP_Rewind.
004940  **
004941  ** The P1 cursor must be for a real table, not a pseudo-table.  If P1 is
004942  ** not open then the behavior is undefined.
004943  **
004944  ** The P3 value is a hint to the btree implementation. If P3==1, that
004945  ** means P1 is an SQL index and that this instruction could have been
004946  ** omitted if that index had been unique.  P3 is usually 0.  P3 is
004947  ** always either 0 or 1.
004948  **
004949  ** P4 is always of type P4_ADVANCE. The function pointer points to
004950  ** sqlite3BtreePrevious().
004951  **
004952  ** If P5 is positive and the jump is taken, then event counter
004953  ** number P5-1 in the prepared statement is incremented.
004954  */
004955  /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
004956  **
004957  ** This opcode works just like Prev except that if cursor P1 is not
004958  ** open it behaves a no-op.
004959  */
004960  /* Opcode: SorterNext P1 P2 * * P5
004961  **
004962  ** This opcode works just like OP_Next except that P1 must be a
004963  ** sorter object for which the OP_SorterSort opcode has been
004964  ** invoked.  This opcode advances the cursor to the next sorted
004965  ** record, or jumps to P2 if there are no more sorted records.
004966  */
004967  case OP_SorterNext: {  /* jump */
004968    VdbeCursor *pC;
004969    int res;
004970  
004971    pC = p->apCsr[pOp->p1];
004972    assert( isSorter(pC) );
004973    res = 0;
004974    rc = sqlite3VdbeSorterNext(db, pC, &res);
004975    goto next_tail;
004976  case OP_PrevIfOpen:    /* jump */
004977  case OP_NextIfOpen:    /* jump */
004978    if( p->apCsr[pOp->p1]==0 ) break;
004979    /* Fall through */
004980  case OP_Prev:          /* jump */
004981  case OP_Next:          /* jump */
004982    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
004983    assert( pOp->p5<ArraySize(p->aCounter) );
004984    pC = p->apCsr[pOp->p1];
004985    res = pOp->p3;
004986    assert( pC!=0 );
004987    assert( pC->deferredMoveto==0 );
004988    assert( pC->eCurType==CURTYPE_BTREE );
004989    assert( res==0 || (res==1 && pC->isTable==0) );
004990    testcase( res==1 );
004991    assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
004992    assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
004993    assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
004994    assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
004995  
004996    /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
004997    ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
004998    assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
004999         || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
005000         || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
005001    assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
005002         || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
005003         || pC->seekOp==OP_Last );
005004  
005005    rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
005006  next_tail:
005007    pC->cacheStatus = CACHE_STALE;
005008    VdbeBranchTaken(res==0,2);
005009    if( rc ) goto abort_due_to_error;
005010    if( res==0 ){
005011      pC->nullRow = 0;
005012      p->aCounter[pOp->p5]++;
005013  #ifdef SQLITE_TEST
005014      sqlite3_search_count++;
005015  #endif
005016      goto jump_to_p2_and_check_for_interrupt;
005017    }else{
005018      pC->nullRow = 1;
005019    }
005020    goto check_for_interrupt;
005021  }
005022  
005023  /* Opcode: IdxInsert P1 P2 P3 P4 P5
005024  ** Synopsis: key=r[P2]
005025  **
005026  ** Register P2 holds an SQL index key made using the
005027  ** MakeRecord instructions.  This opcode writes that key
005028  ** into the index P1.  Data for the entry is nil.
005029  **
005030  ** If P4 is not zero, then it is the number of values in the unpacked
005031  ** key of reg(P2).  In that case, P3 is the index of the first register
005032  ** for the unpacked key.  The availability of the unpacked key can sometimes
005033  ** be an optimization.
005034  **
005035  ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
005036  ** that this insert is likely to be an append.
005037  **
005038  ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
005039  ** incremented by this instruction.  If the OPFLAG_NCHANGE bit is clear,
005040  ** then the change counter is unchanged.
005041  **
005042  ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
005043  ** run faster by avoiding an unnecessary seek on cursor P1.  However,
005044  ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
005045  ** seeks on the cursor or if the most recent seek used a key equivalent
005046  ** to P2. 
005047  **
005048  ** This instruction only works for indices.  The equivalent instruction
005049  ** for tables is OP_Insert.
005050  */
005051  /* Opcode: SorterInsert P1 P2 * * *
005052  ** Synopsis: key=r[P2]
005053  **
005054  ** Register P2 holds an SQL index key made using the
005055  ** MakeRecord instructions.  This opcode writes that key
005056  ** into the sorter P1.  Data for the entry is nil.
005057  */
005058  case OP_SorterInsert:       /* in2 */
005059  case OP_IdxInsert: {        /* in2 */
005060    VdbeCursor *pC;
005061    BtreePayload x;
005062  
005063    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005064    pC = p->apCsr[pOp->p1];
005065    assert( pC!=0 );
005066    assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
005067    pIn2 = &aMem[pOp->p2];
005068    assert( pIn2->flags & MEM_Blob );
005069    if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
005070    assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
005071    assert( pC->isTable==0 );
005072    rc = ExpandBlob(pIn2);
005073    if( rc ) goto abort_due_to_error;
005074    if( pOp->opcode==OP_SorterInsert ){
005075      rc = sqlite3VdbeSorterWrite(pC, pIn2);
005076    }else{
005077      x.nKey = pIn2->n;
005078      x.pKey = pIn2->z;
005079      x.aMem = aMem + pOp->p3;
005080      x.nMem = (u16)pOp->p4.i;
005081      rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
005082           (pOp->p5 & OPFLAG_APPEND)!=0, 
005083          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
005084          );
005085      assert( pC->deferredMoveto==0 );
005086      pC->cacheStatus = CACHE_STALE;
005087    }
005088    if( rc) goto abort_due_to_error;
005089    break;
005090  }
005091  
005092  /* Opcode: IdxDelete P1 P2 P3 * *
005093  ** Synopsis: key=r[P2@P3]
005094  **
005095  ** The content of P3 registers starting at register P2 form
005096  ** an unpacked index key. This opcode removes that entry from the 
005097  ** index opened by cursor P1.
005098  */
005099  case OP_IdxDelete: {
005100    VdbeCursor *pC;
005101    BtCursor *pCrsr;
005102    int res;
005103    UnpackedRecord r;
005104  
005105    assert( pOp->p3>0 );
005106    assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
005107    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005108    pC = p->apCsr[pOp->p1];
005109    assert( pC!=0 );
005110    assert( pC->eCurType==CURTYPE_BTREE );
005111    pCrsr = pC->uc.pCursor;
005112    assert( pCrsr!=0 );
005113    assert( pOp->p5==0 );
005114    r.pKeyInfo = pC->pKeyInfo;
005115    r.nField = (u16)pOp->p3;
005116    r.default_rc = 0;
005117    r.aMem = &aMem[pOp->p2];
005118    rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
005119    if( rc ) goto abort_due_to_error;
005120    if( res==0 ){
005121      rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
005122      if( rc ) goto abort_due_to_error;
005123    }
005124    assert( pC->deferredMoveto==0 );
005125    pC->cacheStatus = CACHE_STALE;
005126    pC->seekResult = 0;
005127    break;
005128  }
005129  
005130  /* Opcode: Seek P1 * P3 P4 *
005131  ** Synopsis: Move P3 to P1.rowid
005132  **
005133  ** P1 is an open index cursor and P3 is a cursor on the corresponding
005134  ** table.  This opcode does a deferred seek of the P3 table cursor
005135  ** to the row that corresponds to the current row of P1.
005136  **
005137  ** This is a deferred seek.  Nothing actually happens until
005138  ** the cursor is used to read a record.  That way, if no reads
005139  ** occur, no unnecessary I/O happens.
005140  **
005141  ** P4 may be an array of integers (type P4_INTARRAY) containing
005142  ** one entry for each column in the P3 table.  If array entry a(i)
005143  ** is non-zero, then reading column a(i)-1 from cursor P3 is 
005144  ** equivalent to performing the deferred seek and then reading column i 
005145  ** from P1.  This information is stored in P3 and used to redirect
005146  ** reads against P3 over to P1, thus possibly avoiding the need to
005147  ** seek and read cursor P3.
005148  */
005149  /* Opcode: IdxRowid P1 P2 * * *
005150  ** Synopsis: r[P2]=rowid
005151  **
005152  ** Write into register P2 an integer which is the last entry in the record at
005153  ** the end of the index key pointed to by cursor P1.  This integer should be
005154  ** the rowid of the table entry to which this index entry points.
005155  **
005156  ** See also: Rowid, MakeRecord.
005157  */
005158  case OP_Seek:
005159  case OP_IdxRowid: {              /* out2 */
005160    VdbeCursor *pC;                /* The P1 index cursor */
005161    VdbeCursor *pTabCur;           /* The P2 table cursor (OP_Seek only) */
005162    i64 rowid;                     /* Rowid that P1 current points to */
005163  
005164    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005165    pC = p->apCsr[pOp->p1];
005166    assert( pC!=0 );
005167    assert( pC->eCurType==CURTYPE_BTREE );
005168    assert( pC->uc.pCursor!=0 );
005169    assert( pC->isTable==0 );
005170    assert( pC->deferredMoveto==0 );
005171    assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
005172  
005173    /* The IdxRowid and Seek opcodes are combined because of the commonality
005174    ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
005175    rc = sqlite3VdbeCursorRestore(pC);
005176  
005177    /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
005178    ** out from under the cursor.  That will never happens for an IdxRowid
005179    ** or Seek opcode */
005180    if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
005181  
005182    if( !pC->nullRow ){
005183      rowid = 0;  /* Not needed.  Only used to silence a warning. */
005184      rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
005185      if( rc!=SQLITE_OK ){
005186        goto abort_due_to_error;
005187      }
005188      if( pOp->opcode==OP_Seek ){
005189        assert( pOp->p3>=0 && pOp->p3<p->nCursor );
005190        pTabCur = p->apCsr[pOp->p3];
005191        assert( pTabCur!=0 );
005192        assert( pTabCur->eCurType==CURTYPE_BTREE );
005193        assert( pTabCur->uc.pCursor!=0 );
005194        assert( pTabCur->isTable );
005195        pTabCur->nullRow = 0;
005196        pTabCur->movetoTarget = rowid;
005197        pTabCur->deferredMoveto = 1;
005198        assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
005199        pTabCur->aAltMap = pOp->p4.ai;
005200        pTabCur->pAltCursor = pC;
005201      }else{
005202        pOut = out2Prerelease(p, pOp);
005203        pOut->u.i = rowid;
005204        pOut->flags = MEM_Int;
005205      }
005206    }else{
005207      assert( pOp->opcode==OP_IdxRowid );
005208      sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
005209    }
005210    break;
005211  }
005212  
005213  /* Opcode: IdxGE P1 P2 P3 P4 P5
005214  ** Synopsis: key=r[P3@P4]
005215  **
005216  ** The P4 register values beginning with P3 form an unpacked index 
005217  ** key that omits the PRIMARY KEY.  Compare this key value against the index 
005218  ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 
005219  ** fields at the end.
005220  **
005221  ** If the P1 index entry is greater than or equal to the key value
005222  ** then jump to P2.  Otherwise fall through to the next instruction.
005223  */
005224  /* Opcode: IdxGT P1 P2 P3 P4 P5
005225  ** Synopsis: key=r[P3@P4]
005226  **
005227  ** The P4 register values beginning with P3 form an unpacked index 
005228  ** key that omits the PRIMARY KEY.  Compare this key value against the index 
005229  ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID 
005230  ** fields at the end.
005231  **
005232  ** If the P1 index entry is greater than the key value
005233  ** then jump to P2.  Otherwise fall through to the next instruction.
005234  */
005235  /* Opcode: IdxLT P1 P2 P3 P4 P5
005236  ** Synopsis: key=r[P3@P4]
005237  **
005238  ** The P4 register values beginning with P3 form an unpacked index 
005239  ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
005240  ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
005241  ** ROWID on the P1 index.
005242  **
005243  ** If the P1 index entry is less than the key value then jump to P2.
005244  ** Otherwise fall through to the next instruction.
005245  */
005246  /* Opcode: IdxLE P1 P2 P3 P4 P5
005247  ** Synopsis: key=r[P3@P4]
005248  **
005249  ** The P4 register values beginning with P3 form an unpacked index 
005250  ** key that omits the PRIMARY KEY or ROWID.  Compare this key value against
005251  ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
005252  ** ROWID on the P1 index.
005253  **
005254  ** If the P1 index entry is less than or equal to the key value then jump
005255  ** to P2. Otherwise fall through to the next instruction.
005256  */
005257  case OP_IdxLE:          /* jump */
005258  case OP_IdxGT:          /* jump */
005259  case OP_IdxLT:          /* jump */
005260  case OP_IdxGE:  {       /* jump */
005261    VdbeCursor *pC;
005262    int res;
005263    UnpackedRecord r;
005264  
005265    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005266    pC = p->apCsr[pOp->p1];
005267    assert( pC!=0 );
005268    assert( pC->isOrdered );
005269    assert( pC->eCurType==CURTYPE_BTREE );
005270    assert( pC->uc.pCursor!=0);
005271    assert( pC->deferredMoveto==0 );
005272    assert( pOp->p5==0 || pOp->p5==1 );
005273    assert( pOp->p4type==P4_INT32 );
005274    r.pKeyInfo = pC->pKeyInfo;
005275    r.nField = (u16)pOp->p4.i;
005276    if( pOp->opcode<OP_IdxLT ){
005277      assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
005278      r.default_rc = -1;
005279    }else{
005280      assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
005281      r.default_rc = 0;
005282    }
005283    r.aMem = &aMem[pOp->p3];
005284  #ifdef SQLITE_DEBUG
005285    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
005286  #endif
005287    res = 0;  /* Not needed.  Only used to silence a warning. */
005288    rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
005289    assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
005290    if( (pOp->opcode&1)==(OP_IdxLT&1) ){
005291      assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
005292      res = -res;
005293    }else{
005294      assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
005295      res++;
005296    }
005297    VdbeBranchTaken(res>0,2);
005298    if( rc ) goto abort_due_to_error;
005299    if( res>0 ) goto jump_to_p2;
005300    break;
005301  }
005302  
005303  /* Opcode: Destroy P1 P2 P3 * *
005304  **
005305  ** Delete an entire database table or index whose root page in the database
005306  ** file is given by P1.
005307  **
005308  ** The table being destroyed is in the main database file if P3==0.  If
005309  ** P3==1 then the table to be clear is in the auxiliary database file
005310  ** that is used to store tables create using CREATE TEMPORARY TABLE.
005311  **
005312  ** If AUTOVACUUM is enabled then it is possible that another root page
005313  ** might be moved into the newly deleted root page in order to keep all
005314  ** root pages contiguous at the beginning of the database.  The former
005315  ** value of the root page that moved - its value before the move occurred -
005316  ** is stored in register P2.  If no page 
005317  ** movement was required (because the table being dropped was already 
005318  ** the last one in the database) then a zero is stored in register P2.
005319  ** If AUTOVACUUM is disabled then a zero is stored in register P2.
005320  **
005321  ** See also: Clear
005322  */
005323  case OP_Destroy: {     /* out2 */
005324    int iMoved;
005325    int iDb;
005326  
005327    assert( p->readOnly==0 );
005328    assert( pOp->p1>1 );
005329    pOut = out2Prerelease(p, pOp);
005330    pOut->flags = MEM_Null;
005331    if( db->nVdbeRead > db->nVDestroy+1 ){
005332      rc = SQLITE_LOCKED;
005333      p->errorAction = OE_Abort;
005334      goto abort_due_to_error;
005335    }else{
005336      iDb = pOp->p3;
005337      assert( DbMaskTest(p->btreeMask, iDb) );
005338      iMoved = 0;  /* Not needed.  Only to silence a warning. */
005339      rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
005340      pOut->flags = MEM_Int;
005341      pOut->u.i = iMoved;
005342      if( rc ) goto abort_due_to_error;
005343  #ifndef SQLITE_OMIT_AUTOVACUUM
005344      if( iMoved!=0 ){
005345        sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
005346        /* All OP_Destroy operations occur on the same btree */
005347        assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
005348        resetSchemaOnFault = iDb+1;
005349      }
005350  #endif
005351    }
005352    break;
005353  }
005354  
005355  /* Opcode: Clear P1 P2 P3
005356  **
005357  ** Delete all contents of the database table or index whose root page
005358  ** in the database file is given by P1.  But, unlike Destroy, do not
005359  ** remove the table or index from the database file.
005360  **
005361  ** The table being clear is in the main database file if P2==0.  If
005362  ** P2==1 then the table to be clear is in the auxiliary database file
005363  ** that is used to store tables create using CREATE TEMPORARY TABLE.
005364  **
005365  ** If the P3 value is non-zero, then the table referred to must be an
005366  ** intkey table (an SQL table, not an index). In this case the row change 
005367  ** count is incremented by the number of rows in the table being cleared. 
005368  ** If P3 is greater than zero, then the value stored in register P3 is
005369  ** also incremented by the number of rows in the table being cleared.
005370  **
005371  ** See also: Destroy
005372  */
005373  case OP_Clear: {
005374    int nChange;
005375   
005376    nChange = 0;
005377    assert( p->readOnly==0 );
005378    assert( DbMaskTest(p->btreeMask, pOp->p2) );
005379    rc = sqlite3BtreeClearTable(
005380        db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
005381    );
005382    if( pOp->p3 ){
005383      p->nChange += nChange;
005384      if( pOp->p3>0 ){
005385        assert( memIsValid(&aMem[pOp->p3]) );
005386        memAboutToChange(p, &aMem[pOp->p3]);
005387        aMem[pOp->p3].u.i += nChange;
005388      }
005389    }
005390    if( rc ) goto abort_due_to_error;
005391    break;
005392  }
005393  
005394  /* Opcode: ResetSorter P1 * * * *
005395  **
005396  ** Delete all contents from the ephemeral table or sorter
005397  ** that is open on cursor P1.
005398  **
005399  ** This opcode only works for cursors used for sorting and
005400  ** opened with OP_OpenEphemeral or OP_SorterOpen.
005401  */
005402  case OP_ResetSorter: {
005403    VdbeCursor *pC;
005404   
005405    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
005406    pC = p->apCsr[pOp->p1];
005407    assert( pC!=0 );
005408    if( isSorter(pC) ){
005409      sqlite3VdbeSorterReset(db, pC->uc.pSorter);
005410    }else{
005411      assert( pC->eCurType==CURTYPE_BTREE );
005412      assert( pC->isEphemeral );
005413      rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
005414      if( rc ) goto abort_due_to_error;
005415    }
005416    break;
005417  }
005418  
005419  /* Opcode: CreateTable P1 P2 * * *
005420  ** Synopsis: r[P2]=root iDb=P1
005421  **
005422  ** Allocate a new table in the main database file if P1==0 or in the
005423  ** auxiliary database file if P1==1 or in an attached database if
005424  ** P1>1.  Write the root page number of the new table into
005425  ** register P2
005426  **
005427  ** The difference between a table and an index is this:  A table must
005428  ** have a 4-byte integer key and can have arbitrary data.  An index
005429  ** has an arbitrary key but no data.
005430  **
005431  ** See also: CreateIndex
005432  */
005433  /* Opcode: CreateIndex P1 P2 * * *
005434  ** Synopsis: r[P2]=root iDb=P1
005435  **
005436  ** Allocate a new index in the main database file if P1==0 or in the
005437  ** auxiliary database file if P1==1 or in an attached database if
005438  ** P1>1.  Write the root page number of the new table into
005439  ** register P2.
005440  **
005441  ** See documentation on OP_CreateTable for additional information.
005442  */
005443  case OP_CreateIndex:            /* out2 */
005444  case OP_CreateTable: {          /* out2 */
005445    int pgno;
005446    int flags;
005447    Db *pDb;
005448  
005449    pOut = out2Prerelease(p, pOp);
005450    pgno = 0;
005451    assert( pOp->p1>=0 && pOp->p1<db->nDb );
005452    assert( DbMaskTest(p->btreeMask, pOp->p1) );
005453    assert( p->readOnly==0 );
005454    pDb = &db->aDb[pOp->p1];
005455    assert( pDb->pBt!=0 );
005456    if( pOp->opcode==OP_CreateTable ){
005457      /* flags = BTREE_INTKEY; */
005458      flags = BTREE_INTKEY;
005459    }else{
005460      flags = BTREE_BLOBKEY;
005461    }
005462    rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
005463    if( rc ) goto abort_due_to_error;
005464    pOut->u.i = pgno;
005465    break;
005466  }
005467  
005468  /* Opcode: ParseSchema P1 * * P4 *
005469  **
005470  ** Read and parse all entries from the SQLITE_MASTER table of database P1
005471  ** that match the WHERE clause P4. 
005472  **
005473  ** This opcode invokes the parser to create a new virtual machine,
005474  ** then runs the new virtual machine.  It is thus a re-entrant opcode.
005475  */
005476  case OP_ParseSchema: {
005477    int iDb;
005478    const char *zMaster;
005479    char *zSql;
005480    InitData initData;
005481  
005482    /* Any prepared statement that invokes this opcode will hold mutexes
005483    ** on every btree.  This is a prerequisite for invoking 
005484    ** sqlite3InitCallback().
005485    */
005486  #ifdef SQLITE_DEBUG
005487    for(iDb=0; iDb<db->nDb; iDb++){
005488      assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
005489    }
005490  #endif
005491  
005492    iDb = pOp->p1;
005493    assert( iDb>=0 && iDb<db->nDb );
005494    assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
005495    /* Used to be a conditional */ {
005496      zMaster = MASTER_NAME;
005497      initData.db = db;
005498      initData.iDb = pOp->p1;
005499      initData.pzErrMsg = &p->zErrMsg;
005500      zSql = sqlite3MPrintf(db,
005501         "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
005502         db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
005503      if( zSql==0 ){
005504        rc = SQLITE_NOMEM_BKPT;
005505      }else{
005506        assert( db->init.busy==0 );
005507        db->init.busy = 1;
005508        initData.rc = SQLITE_OK;
005509        assert( !db->mallocFailed );
005510        rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
005511        if( rc==SQLITE_OK ) rc = initData.rc;
005512        sqlite3DbFree(db, zSql);
005513        db->init.busy = 0;
005514      }
005515    }
005516    if( rc ){
005517      sqlite3ResetAllSchemasOfConnection(db);
005518      if( rc==SQLITE_NOMEM ){
005519        goto no_mem;
005520      }
005521      goto abort_due_to_error;
005522    }
005523    break;  
005524  }
005525  
005526  #if !defined(SQLITE_OMIT_ANALYZE)
005527  /* Opcode: LoadAnalysis P1 * * * *
005528  **
005529  ** Read the sqlite_stat1 table for database P1 and load the content
005530  ** of that table into the internal index hash table.  This will cause
005531  ** the analysis to be used when preparing all subsequent queries.
005532  */
005533  case OP_LoadAnalysis: {
005534    assert( pOp->p1>=0 && pOp->p1<db->nDb );
005535    rc = sqlite3AnalysisLoad(db, pOp->p1);
005536    if( rc ) goto abort_due_to_error;
005537    break;  
005538  }
005539  #endif /* !defined(SQLITE_OMIT_ANALYZE) */
005540  
005541  /* Opcode: DropTable P1 * * P4 *
005542  **
005543  ** Remove the internal (in-memory) data structures that describe
005544  ** the table named P4 in database P1.  This is called after a table
005545  ** is dropped from disk (using the Destroy opcode) in order to keep 
005546  ** the internal representation of the
005547  ** schema consistent with what is on disk.
005548  */
005549  case OP_DropTable: {
005550    sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
005551    break;
005552  }
005553  
005554  /* Opcode: DropIndex P1 * * P4 *
005555  **
005556  ** Remove the internal (in-memory) data structures that describe
005557  ** the index named P4 in database P1.  This is called after an index
005558  ** is dropped from disk (using the Destroy opcode)
005559  ** in order to keep the internal representation of the
005560  ** schema consistent with what is on disk.
005561  */
005562  case OP_DropIndex: {
005563    sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
005564    break;
005565  }
005566  
005567  /* Opcode: DropTrigger P1 * * P4 *
005568  **
005569  ** Remove the internal (in-memory) data structures that describe
005570  ** the trigger named P4 in database P1.  This is called after a trigger
005571  ** is dropped from disk (using the Destroy opcode) in order to keep 
005572  ** the internal representation of the
005573  ** schema consistent with what is on disk.
005574  */
005575  case OP_DropTrigger: {
005576    sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
005577    break;
005578  }
005579  
005580  
005581  #ifndef SQLITE_OMIT_INTEGRITY_CHECK
005582  /* Opcode: IntegrityCk P1 P2 P3 P4 P5
005583  **
005584  ** Do an analysis of the currently open database.  Store in
005585  ** register P1 the text of an error message describing any problems.
005586  ** If no problems are found, store a NULL in register P1.
005587  **
005588  ** The register P3 contains the maximum number of allowed errors.
005589  ** At most reg(P3) errors will be reported.
005590  ** In other words, the analysis stops as soon as reg(P1) errors are 
005591  ** seen.  Reg(P1) is updated with the number of errors remaining.
005592  **
005593  ** The root page numbers of all tables in the database are integers
005594  ** stored in P4_INTARRAY argument.
005595  **
005596  ** If P5 is not zero, the check is done on the auxiliary database
005597  ** file, not the main database file.
005598  **
005599  ** This opcode is used to implement the integrity_check pragma.
005600  */
005601  case OP_IntegrityCk: {
005602    int nRoot;      /* Number of tables to check.  (Number of root pages.) */
005603    int *aRoot;     /* Array of rootpage numbers for tables to be checked */
005604    int nErr;       /* Number of errors reported */
005605    char *z;        /* Text of the error report */
005606    Mem *pnErr;     /* Register keeping track of errors remaining */
005607  
005608    assert( p->bIsReader );
005609    nRoot = pOp->p2;
005610    aRoot = pOp->p4.ai;
005611    assert( nRoot>0 );
005612    assert( aRoot[nRoot]==0 );
005613    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
005614    pnErr = &aMem[pOp->p3];
005615    assert( (pnErr->flags & MEM_Int)!=0 );
005616    assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
005617    pIn1 = &aMem[pOp->p1];
005618    assert( pOp->p5<db->nDb );
005619    assert( DbMaskTest(p->btreeMask, pOp->p5) );
005620    z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
005621                                   (int)pnErr->u.i, &nErr);
005622    pnErr->u.i -= nErr;
005623    sqlite3VdbeMemSetNull(pIn1);
005624    if( nErr==0 ){
005625      assert( z==0 );
005626    }else if( z==0 ){
005627      goto no_mem;
005628    }else{
005629      sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
005630    }
005631    UPDATE_MAX_BLOBSIZE(pIn1);
005632    sqlite3VdbeChangeEncoding(pIn1, encoding);
005633    break;
005634  }
005635  #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
005636  
005637  /* Opcode: RowSetAdd P1 P2 * * *
005638  ** Synopsis: rowset(P1)=r[P2]
005639  **
005640  ** Insert the integer value held by register P2 into a boolean index
005641  ** held in register P1.
005642  **
005643  ** An assertion fails if P2 is not an integer.
005644  */
005645  case OP_RowSetAdd: {       /* in1, in2 */
005646    pIn1 = &aMem[pOp->p1];
005647    pIn2 = &aMem[pOp->p2];
005648    assert( (pIn2->flags & MEM_Int)!=0 );
005649    if( (pIn1->flags & MEM_RowSet)==0 ){
005650      sqlite3VdbeMemSetRowSet(pIn1);
005651      if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
005652    }
005653    sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
005654    break;
005655  }
005656  
005657  /* Opcode: RowSetRead P1 P2 P3 * *
005658  ** Synopsis: r[P3]=rowset(P1)
005659  **
005660  ** Extract the smallest value from boolean index P1 and put that value into
005661  ** register P3.  Or, if boolean index P1 is initially empty, leave P3
005662  ** unchanged and jump to instruction P2.
005663  */
005664  case OP_RowSetRead: {       /* jump, in1, out3 */
005665    i64 val;
005666  
005667    pIn1 = &aMem[pOp->p1];
005668    if( (pIn1->flags & MEM_RowSet)==0 
005669     || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
005670    ){
005671      /* The boolean index is empty */
005672      sqlite3VdbeMemSetNull(pIn1);
005673      VdbeBranchTaken(1,2);
005674      goto jump_to_p2_and_check_for_interrupt;
005675    }else{
005676      /* A value was pulled from the index */
005677      VdbeBranchTaken(0,2);
005678      sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
005679    }
005680    goto check_for_interrupt;
005681  }
005682  
005683  /* Opcode: RowSetTest P1 P2 P3 P4
005684  ** Synopsis: if r[P3] in rowset(P1) goto P2
005685  **
005686  ** Register P3 is assumed to hold a 64-bit integer value. If register P1
005687  ** contains a RowSet object and that RowSet object contains
005688  ** the value held in P3, jump to register P2. Otherwise, insert the
005689  ** integer in P3 into the RowSet and continue on to the
005690  ** next opcode.
005691  **
005692  ** The RowSet object is optimized for the case where successive sets
005693  ** of integers, where each set contains no duplicates. Each set
005694  ** of values is identified by a unique P4 value. The first set
005695  ** must have P4==0, the final set P4=-1.  P4 must be either -1 or
005696  ** non-negative.  For non-negative values of P4 only the lower 4
005697  ** bits are significant.
005698  **
005699  ** This allows optimizations: (a) when P4==0 there is no need to test
005700  ** the rowset object for P3, as it is guaranteed not to contain it,
005701  ** (b) when P4==-1 there is no need to insert the value, as it will
005702  ** never be tested for, and (c) when a value that is part of set X is
005703  ** inserted, there is no need to search to see if the same value was
005704  ** previously inserted as part of set X (only if it was previously
005705  ** inserted as part of some other set).
005706  */
005707  case OP_RowSetTest: {                     /* jump, in1, in3 */
005708    int iSet;
005709    int exists;
005710  
005711    pIn1 = &aMem[pOp->p1];
005712    pIn3 = &aMem[pOp->p3];
005713    iSet = pOp->p4.i;
005714    assert( pIn3->flags&MEM_Int );
005715  
005716    /* If there is anything other than a rowset object in memory cell P1,
005717    ** delete it now and initialize P1 with an empty rowset
005718    */
005719    if( (pIn1->flags & MEM_RowSet)==0 ){
005720      sqlite3VdbeMemSetRowSet(pIn1);
005721      if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
005722    }
005723  
005724    assert( pOp->p4type==P4_INT32 );
005725    assert( iSet==-1 || iSet>=0 );
005726    if( iSet ){
005727      exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
005728      VdbeBranchTaken(exists!=0,2);
005729      if( exists ) goto jump_to_p2;
005730    }
005731    if( iSet>=0 ){
005732      sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
005733    }
005734    break;
005735  }
005736  
005737  
005738  #ifndef SQLITE_OMIT_TRIGGER
005739  
005740  /* Opcode: Program P1 P2 P3 P4 P5
005741  **
005742  ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM). 
005743  **
005744  ** P1 contains the address of the memory cell that contains the first memory 
005745  ** cell in an array of values used as arguments to the sub-program. P2 
005746  ** contains the address to jump to if the sub-program throws an IGNORE 
005747  ** exception using the RAISE() function. Register P3 contains the address 
005748  ** of a memory cell in this (the parent) VM that is used to allocate the 
005749  ** memory required by the sub-vdbe at runtime.
005750  **
005751  ** P4 is a pointer to the VM containing the trigger program.
005752  **
005753  ** If P5 is non-zero, then recursive program invocation is enabled.
005754  */
005755  case OP_Program: {        /* jump */
005756    int nMem;               /* Number of memory registers for sub-program */
005757    int nByte;              /* Bytes of runtime space required for sub-program */
005758    Mem *pRt;               /* Register to allocate runtime space */
005759    Mem *pMem;              /* Used to iterate through memory cells */
005760    Mem *pEnd;              /* Last memory cell in new array */
005761    VdbeFrame *pFrame;      /* New vdbe frame to execute in */
005762    SubProgram *pProgram;   /* Sub-program to execute */
005763    void *t;                /* Token identifying trigger */
005764  
005765    pProgram = pOp->p4.pProgram;
005766    pRt = &aMem[pOp->p3];
005767    assert( pProgram->nOp>0 );
005768    
005769    /* If the p5 flag is clear, then recursive invocation of triggers is 
005770    ** disabled for backwards compatibility (p5 is set if this sub-program
005771    ** is really a trigger, not a foreign key action, and the flag set
005772    ** and cleared by the "PRAGMA recursive_triggers" command is clear).
005773    ** 
005774    ** It is recursive invocation of triggers, at the SQL level, that is 
005775    ** disabled. In some cases a single trigger may generate more than one 
005776    ** SubProgram (if the trigger may be executed with more than one different 
005777    ** ON CONFLICT algorithm). SubProgram structures associated with a
005778    ** single trigger all have the same value for the SubProgram.token 
005779    ** variable.  */
005780    if( pOp->p5 ){
005781      t = pProgram->token;
005782      for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
005783      if( pFrame ) break;
005784    }
005785  
005786    if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
005787      rc = SQLITE_ERROR;
005788      sqlite3VdbeError(p, "too many levels of trigger recursion");
005789      goto abort_due_to_error;
005790    }
005791  
005792    /* Register pRt is used to store the memory required to save the state
005793    ** of the current program, and the memory required at runtime to execute
005794    ** the trigger program. If this trigger has been fired before, then pRt 
005795    ** is already allocated. Otherwise, it must be initialized.  */
005796    if( (pRt->flags&MEM_Frame)==0 ){
005797      /* SubProgram.nMem is set to the number of memory cells used by the 
005798      ** program stored in SubProgram.aOp. As well as these, one memory
005799      ** cell is required for each cursor used by the program. Set local
005800      ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
005801      */
005802      nMem = pProgram->nMem + pProgram->nCsr;
005803      assert( nMem>0 );
005804      if( pProgram->nCsr==0 ) nMem++;
005805      nByte = ROUND8(sizeof(VdbeFrame))
005806                + nMem * sizeof(Mem)
005807                + pProgram->nCsr * sizeof(VdbeCursor *);
005808      pFrame = sqlite3DbMallocZero(db, nByte);
005809      if( !pFrame ){
005810        goto no_mem;
005811      }
005812      sqlite3VdbeMemRelease(pRt);
005813      pRt->flags = MEM_Frame;
005814      pRt->u.pFrame = pFrame;
005815  
005816      pFrame->v = p;
005817      pFrame->nChildMem = nMem;
005818      pFrame->nChildCsr = pProgram->nCsr;
005819      pFrame->pc = (int)(pOp - aOp);
005820      pFrame->aMem = p->aMem;
005821      pFrame->nMem = p->nMem;
005822      pFrame->apCsr = p->apCsr;
005823      pFrame->nCursor = p->nCursor;
005824      pFrame->aOp = p->aOp;
005825      pFrame->nOp = p->nOp;
005826      pFrame->token = pProgram->token;
005827  #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
005828      pFrame->anExec = p->anExec;
005829  #endif
005830  
005831      pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
005832      for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
005833        pMem->flags = MEM_Undefined;
005834        pMem->db = db;
005835      }
005836    }else{
005837      pFrame = pRt->u.pFrame;
005838      assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem 
005839          || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
005840      assert( pProgram->nCsr==pFrame->nChildCsr );
005841      assert( (int)(pOp - aOp)==pFrame->pc );
005842    }
005843  
005844    p->nFrame++;
005845    pFrame->pParent = p->pFrame;
005846    pFrame->lastRowid = lastRowid;
005847    pFrame->nChange = p->nChange;
005848    pFrame->nDbChange = p->db->nChange;
005849    assert( pFrame->pAuxData==0 );
005850    pFrame->pAuxData = p->pAuxData;
005851    p->pAuxData = 0;
005852    p->nChange = 0;
005853    p->pFrame = pFrame;
005854    p->aMem = aMem = VdbeFrameMem(pFrame);
005855    p->nMem = pFrame->nChildMem;
005856    p->nCursor = (u16)pFrame->nChildCsr;
005857    p->apCsr = (VdbeCursor **)&aMem[p->nMem];
005858    p->aOp = aOp = pProgram->aOp;
005859    p->nOp = pProgram->nOp;
005860  #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
005861    p->anExec = 0;
005862  #endif
005863    pOp = &aOp[-1];
005864  
005865    break;
005866  }
005867  
005868  /* Opcode: Param P1 P2 * * *
005869  **
005870  ** This opcode is only ever present in sub-programs called via the 
005871  ** OP_Program instruction. Copy a value currently stored in a memory 
005872  ** cell of the calling (parent) frame to cell P2 in the current frames 
005873  ** address space. This is used by trigger programs to access the new.* 
005874  ** and old.* values.
005875  **
005876  ** The address of the cell in the parent frame is determined by adding
005877  ** the value of the P1 argument to the value of the P1 argument to the
005878  ** calling OP_Program instruction.
005879  */
005880  case OP_Param: {           /* out2 */
005881    VdbeFrame *pFrame;
005882    Mem *pIn;
005883    pOut = out2Prerelease(p, pOp);
005884    pFrame = p->pFrame;
005885    pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];   
005886    sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
005887    break;
005888  }
005889  
005890  #endif /* #ifndef SQLITE_OMIT_TRIGGER */
005891  
005892  #ifndef SQLITE_OMIT_FOREIGN_KEY
005893  /* Opcode: FkCounter P1 P2 * * *
005894  ** Synopsis: fkctr[P1]+=P2
005895  **
005896  ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
005897  ** If P1 is non-zero, the database constraint counter is incremented 
005898  ** (deferred foreign key constraints). Otherwise, if P1 is zero, the 
005899  ** statement counter is incremented (immediate foreign key constraints).
005900  */
005901  case OP_FkCounter: {
005902    if( db->flags & SQLITE_DeferFKs ){
005903      db->nDeferredImmCons += pOp->p2;
005904    }else if( pOp->p1 ){
005905      db->nDeferredCons += pOp->p2;
005906    }else{
005907      p->nFkConstraint += pOp->p2;
005908    }
005909    break;
005910  }
005911  
005912  /* Opcode: FkIfZero P1 P2 * * *
005913  ** Synopsis: if fkctr[P1]==0 goto P2
005914  **
005915  ** This opcode tests if a foreign key constraint-counter is currently zero.
005916  ** If so, jump to instruction P2. Otherwise, fall through to the next 
005917  ** instruction.
005918  **
005919  ** If P1 is non-zero, then the jump is taken if the database constraint-counter
005920  ** is zero (the one that counts deferred constraint violations). If P1 is
005921  ** zero, the jump is taken if the statement constraint-counter is zero
005922  ** (immediate foreign key constraint violations).
005923  */
005924  case OP_FkIfZero: {         /* jump */
005925    if( pOp->p1 ){
005926      VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
005927      if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
005928    }else{
005929      VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
005930      if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
005931    }
005932    break;
005933  }
005934  #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
005935  
005936  #ifndef SQLITE_OMIT_AUTOINCREMENT
005937  /* Opcode: MemMax P1 P2 * * *
005938  ** Synopsis: r[P1]=max(r[P1],r[P2])
005939  **
005940  ** P1 is a register in the root frame of this VM (the root frame is
005941  ** different from the current frame if this instruction is being executed
005942  ** within a sub-program). Set the value of register P1 to the maximum of 
005943  ** its current value and the value in register P2.
005944  **
005945  ** This instruction throws an error if the memory cell is not initially
005946  ** an integer.
005947  */
005948  case OP_MemMax: {        /* in2 */
005949    VdbeFrame *pFrame;
005950    if( p->pFrame ){
005951      for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
005952      pIn1 = &pFrame->aMem[pOp->p1];
005953    }else{
005954      pIn1 = &aMem[pOp->p1];
005955    }
005956    assert( memIsValid(pIn1) );
005957    sqlite3VdbeMemIntegerify(pIn1);
005958    pIn2 = &aMem[pOp->p2];
005959    sqlite3VdbeMemIntegerify(pIn2);
005960    if( pIn1->u.i<pIn2->u.i){
005961      pIn1->u.i = pIn2->u.i;
005962    }
005963    break;
005964  }
005965  #endif /* SQLITE_OMIT_AUTOINCREMENT */
005966  
005967  /* Opcode: IfPos P1 P2 P3 * *
005968  ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
005969  **
005970  ** Register P1 must contain an integer.
005971  ** If the value of register P1 is 1 or greater, subtract P3 from the
005972  ** value in P1 and jump to P2.
005973  **
005974  ** If the initial value of register P1 is less than 1, then the
005975  ** value is unchanged and control passes through to the next instruction.
005976  */
005977  case OP_IfPos: {        /* jump, in1 */
005978    pIn1 = &aMem[pOp->p1];
005979    assert( pIn1->flags&MEM_Int );
005980    VdbeBranchTaken( pIn1->u.i>0, 2);
005981    if( pIn1->u.i>0 ){
005982      pIn1->u.i -= pOp->p3;
005983      goto jump_to_p2;
005984    }
005985    break;
005986  }
005987  
005988  /* Opcode: OffsetLimit P1 P2 P3 * *
005989  ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
005990  **
005991  ** This opcode performs a commonly used computation associated with
005992  ** LIMIT and OFFSET process.  r[P1] holds the limit counter.  r[P3]
005993  ** holds the offset counter.  The opcode computes the combined value
005994  ** of the LIMIT and OFFSET and stores that value in r[P2].  The r[P2]
005995  ** value computed is the total number of rows that will need to be
005996  ** visited in order to complete the query.
005997  **
005998  ** If r[P3] is zero or negative, that means there is no OFFSET
005999  ** and r[P2] is set to be the value of the LIMIT, r[P1].
006000  **
006001  ** if r[P1] is zero or negative, that means there is no LIMIT
006002  ** and r[P2] is set to -1. 
006003  **
006004  ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
006005  */
006006  case OP_OffsetLimit: {    /* in1, out2, in3 */
006007    i64 x;
006008    pIn1 = &aMem[pOp->p1];
006009    pIn3 = &aMem[pOp->p3];
006010    pOut = out2Prerelease(p, pOp);
006011    assert( pIn1->flags & MEM_Int );
006012    assert( pIn3->flags & MEM_Int );
006013    x = pIn1->u.i;
006014    if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
006015      /* If the LIMIT is less than or equal to zero, loop forever.  This
006016      ** is documented.  But also, if the LIMIT+OFFSET exceeds 2^63 then
006017      ** also loop forever.  This is undocumented.  In fact, one could argue
006018      ** that the loop should terminate.  But assuming 1 billion iterations
006019      ** per second (far exceeding the capabilities of any current hardware)
006020      ** it would take nearly 300 years to actually reach the limit.  So
006021      ** looping forever is a reasonable approximation. */
006022      pOut->u.i = -1;
006023    }else{
006024      pOut->u.i = x;
006025    }
006026    break;
006027  }
006028  
006029  /* Opcode: IfNotZero P1 P2 * * *
006030  ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
006031  **
006032  ** Register P1 must contain an integer.  If the content of register P1 is
006033  ** initially greater than zero, then decrement the value in register P1.
006034  ** If it is non-zero (negative or positive) and then also jump to P2.  
006035  ** If register P1 is initially zero, leave it unchanged and fall through.
006036  */
006037  case OP_IfNotZero: {        /* jump, in1 */
006038    pIn1 = &aMem[pOp->p1];
006039    assert( pIn1->flags&MEM_Int );
006040    VdbeBranchTaken(pIn1->u.i<0, 2);
006041    if( pIn1->u.i ){
006042       if( pIn1->u.i>0 ) pIn1->u.i--;
006043       goto jump_to_p2;
006044    }
006045    break;
006046  }
006047  
006048  /* Opcode: DecrJumpZero P1 P2 * * *
006049  ** Synopsis: if (--r[P1])==0 goto P2
006050  **
006051  ** Register P1 must hold an integer.  Decrement the value in P1
006052  ** and jump to P2 if the new value is exactly zero.
006053  */
006054  case OP_DecrJumpZero: {      /* jump, in1 */
006055    pIn1 = &aMem[pOp->p1];
006056    assert( pIn1->flags&MEM_Int );
006057    if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
006058    VdbeBranchTaken(pIn1->u.i==0, 2);
006059    if( pIn1->u.i==0 ) goto jump_to_p2;
006060    break;
006061  }
006062  
006063  
006064  /* Opcode: AggStep0 * P2 P3 P4 P5
006065  ** Synopsis: accum=r[P3] step(r[P2@P5])
006066  **
006067  ** Execute the step function for an aggregate.  The
006068  ** function has P5 arguments.   P4 is a pointer to the FuncDef
006069  ** structure that specifies the function.  Register P3 is the
006070  ** accumulator.
006071  **
006072  ** The P5 arguments are taken from register P2 and its
006073  ** successors.
006074  */
006075  /* Opcode: AggStep * P2 P3 P4 P5
006076  ** Synopsis: accum=r[P3] step(r[P2@P5])
006077  **
006078  ** Execute the step function for an aggregate.  The
006079  ** function has P5 arguments.   P4 is a pointer to an sqlite3_context
006080  ** object that is used to run the function.  Register P3 is
006081  ** as the accumulator.
006082  **
006083  ** The P5 arguments are taken from register P2 and its
006084  ** successors.
006085  **
006086  ** This opcode is initially coded as OP_AggStep0.  On first evaluation,
006087  ** the FuncDef stored in P4 is converted into an sqlite3_context and
006088  ** the opcode is changed.  In this way, the initialization of the
006089  ** sqlite3_context only happens once, instead of on each call to the
006090  ** step function.
006091  */
006092  case OP_AggStep0: {
006093    int n;
006094    sqlite3_context *pCtx;
006095  
006096    assert( pOp->p4type==P4_FUNCDEF );
006097    n = pOp->p5;
006098    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
006099    assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
006100    assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
006101    pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
006102    if( pCtx==0 ) goto no_mem;
006103    pCtx->pMem = 0;
006104    pCtx->pFunc = pOp->p4.pFunc;
006105    pCtx->iOp = (int)(pOp - aOp);
006106    pCtx->pVdbe = p;
006107    pCtx->argc = n;
006108    pOp->p4type = P4_FUNCCTX;
006109    pOp->p4.pCtx = pCtx;
006110    pOp->opcode = OP_AggStep;
006111    /* Fall through into OP_AggStep */
006112  }
006113  case OP_AggStep: {
006114    int i;
006115    sqlite3_context *pCtx;
006116    Mem *pMem;
006117    Mem t;
006118  
006119    assert( pOp->p4type==P4_FUNCCTX );
006120    pCtx = pOp->p4.pCtx;
006121    pMem = &aMem[pOp->p3];
006122  
006123    /* If this function is inside of a trigger, the register array in aMem[]
006124    ** might change from one evaluation to the next.  The next block of code
006125    ** checks to see if the register array has changed, and if so it
006126    ** reinitializes the relavant parts of the sqlite3_context object */
006127    if( pCtx->pMem != pMem ){
006128      pCtx->pMem = pMem;
006129      for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
006130    }
006131  
006132  #ifdef SQLITE_DEBUG
006133    for(i=0; i<pCtx->argc; i++){
006134      assert( memIsValid(pCtx->argv[i]) );
006135      REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
006136    }
006137  #endif
006138  
006139    pMem->n++;
006140    sqlite3VdbeMemInit(&t, db, MEM_Null);
006141    pCtx->pOut = &t;
006142    pCtx->fErrorOrAux = 0;
006143    pCtx->skipFlag = 0;
006144    (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
006145    if( pCtx->fErrorOrAux ){
006146      if( pCtx->isError ){
006147        sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
006148        rc = pCtx->isError;
006149      }
006150      sqlite3VdbeMemRelease(&t);
006151      if( rc ) goto abort_due_to_error;
006152    }else{
006153      assert( t.flags==MEM_Null );
006154    }
006155    if( pCtx->skipFlag ){
006156      assert( pOp[-1].opcode==OP_CollSeq );
006157      i = pOp[-1].p1;
006158      if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
006159    }
006160    break;
006161  }
006162  
006163  /* Opcode: AggFinal P1 P2 * P4 *
006164  ** Synopsis: accum=r[P1] N=P2
006165  **
006166  ** Execute the finalizer function for an aggregate.  P1 is
006167  ** the memory location that is the accumulator for the aggregate.
006168  **
006169  ** P2 is the number of arguments that the step function takes and
006170  ** P4 is a pointer to the FuncDef for this function.  The P2
006171  ** argument is not used by this opcode.  It is only there to disambiguate
006172  ** functions that can take varying numbers of arguments.  The
006173  ** P4 argument is only needed for the degenerate case where
006174  ** the step function was not previously called.
006175  */
006176  case OP_AggFinal: {
006177    Mem *pMem;
006178    assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
006179    pMem = &aMem[pOp->p1];
006180    assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
006181    rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
006182    if( rc ){
006183      sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
006184      goto abort_due_to_error;
006185    }
006186    sqlite3VdbeChangeEncoding(pMem, encoding);
006187    UPDATE_MAX_BLOBSIZE(pMem);
006188    if( sqlite3VdbeMemTooBig(pMem) ){
006189      goto too_big;
006190    }
006191    break;
006192  }
006193  
006194  #ifndef SQLITE_OMIT_WAL
006195  /* Opcode: Checkpoint P1 P2 P3 * *
006196  **
006197  ** Checkpoint database P1. This is a no-op if P1 is not currently in
006198  ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
006199  ** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
006200  ** SQLITE_BUSY or not, respectively.  Write the number of pages in the
006201  ** WAL after the checkpoint into mem[P3+1] and the number of pages
006202  ** in the WAL that have been checkpointed after the checkpoint
006203  ** completes into mem[P3+2].  However on an error, mem[P3+1] and
006204  ** mem[P3+2] are initialized to -1.
006205  */
006206  case OP_Checkpoint: {
006207    int i;                          /* Loop counter */
006208    int aRes[3];                    /* Results */
006209    Mem *pMem;                      /* Write results here */
006210  
006211    assert( p->readOnly==0 );
006212    aRes[0] = 0;
006213    aRes[1] = aRes[2] = -1;
006214    assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
006215         || pOp->p2==SQLITE_CHECKPOINT_FULL
006216         || pOp->p2==SQLITE_CHECKPOINT_RESTART
006217         || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
006218    );
006219    rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
006220    if( rc ){
006221      if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
006222      rc = SQLITE_OK;
006223      aRes[0] = 1;
006224    }
006225    for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
006226      sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
006227    }    
006228    break;
006229  };  
006230  #endif
006231  
006232  #ifndef SQLITE_OMIT_PRAGMA
006233  /* Opcode: JournalMode P1 P2 P3 * *
006234  **
006235  ** Change the journal mode of database P1 to P3. P3 must be one of the
006236  ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
006237  ** modes (delete, truncate, persist, off and memory), this is a simple
006238  ** operation. No IO is required.
006239  **
006240  ** If changing into or out of WAL mode the procedure is more complicated.
006241  **
006242  ** Write a string containing the final journal-mode to register P2.
006243  */
006244  case OP_JournalMode: {    /* out2 */
006245    Btree *pBt;                     /* Btree to change journal mode of */
006246    Pager *pPager;                  /* Pager associated with pBt */
006247    int eNew;                       /* New journal mode */
006248    int eOld;                       /* The old journal mode */
006249  #ifndef SQLITE_OMIT_WAL
006250    const char *zFilename;          /* Name of database file for pPager */
006251  #endif
006252  
006253    pOut = out2Prerelease(p, pOp);
006254    eNew = pOp->p3;
006255    assert( eNew==PAGER_JOURNALMODE_DELETE 
006256         || eNew==PAGER_JOURNALMODE_TRUNCATE 
006257         || eNew==PAGER_JOURNALMODE_PERSIST 
006258         || eNew==PAGER_JOURNALMODE_OFF
006259         || eNew==PAGER_JOURNALMODE_MEMORY
006260         || eNew==PAGER_JOURNALMODE_WAL
006261         || eNew==PAGER_JOURNALMODE_QUERY
006262    );
006263    assert( pOp->p1>=0 && pOp->p1<db->nDb );
006264    assert( p->readOnly==0 );
006265  
006266    pBt = db->aDb[pOp->p1].pBt;
006267    pPager = sqlite3BtreePager(pBt);
006268    eOld = sqlite3PagerGetJournalMode(pPager);
006269    if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
006270    if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
006271  
006272  #ifndef SQLITE_OMIT_WAL
006273    zFilename = sqlite3PagerFilename(pPager, 1);
006274  
006275    /* Do not allow a transition to journal_mode=WAL for a database
006276    ** in temporary storage or if the VFS does not support shared memory 
006277    */
006278    if( eNew==PAGER_JOURNALMODE_WAL
006279     && (sqlite3Strlen30(zFilename)==0           /* Temp file */
006280         || !sqlite3PagerWalSupported(pPager))   /* No shared-memory support */
006281    ){
006282      eNew = eOld;
006283    }
006284  
006285    if( (eNew!=eOld)
006286     && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
006287    ){
006288      if( !db->autoCommit || db->nVdbeRead>1 ){
006289        rc = SQLITE_ERROR;
006290        sqlite3VdbeError(p,
006291            "cannot change %s wal mode from within a transaction",
006292            (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
006293        );
006294        goto abort_due_to_error;
006295      }else{
006296   
006297        if( eOld==PAGER_JOURNALMODE_WAL ){
006298          /* If leaving WAL mode, close the log file. If successful, the call
006299          ** to PagerCloseWal() checkpoints and deletes the write-ahead-log 
006300          ** file. An EXCLUSIVE lock may still be held on the database file 
006301          ** after a successful return. 
006302          */
006303          rc = sqlite3PagerCloseWal(pPager, db);
006304          if( rc==SQLITE_OK ){
006305            sqlite3PagerSetJournalMode(pPager, eNew);
006306          }
006307        }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
006308          /* Cannot transition directly from MEMORY to WAL.  Use mode OFF
006309          ** as an intermediate */
006310          sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
006311        }
006312    
006313        /* Open a transaction on the database file. Regardless of the journal
006314        ** mode, this transaction always uses a rollback journal.
006315        */
006316        assert( sqlite3BtreeIsInTrans(pBt)==0 );
006317        if( rc==SQLITE_OK ){
006318          rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
006319        }
006320      }
006321    }
006322  #endif /* ifndef SQLITE_OMIT_WAL */
006323  
006324    if( rc ) eNew = eOld;
006325    eNew = sqlite3PagerSetJournalMode(pPager, eNew);
006326  
006327    pOut->flags = MEM_Str|MEM_Static|MEM_Term;
006328    pOut->z = (char *)sqlite3JournalModename(eNew);
006329    pOut->n = sqlite3Strlen30(pOut->z);
006330    pOut->enc = SQLITE_UTF8;
006331    sqlite3VdbeChangeEncoding(pOut, encoding);
006332    if( rc ) goto abort_due_to_error;
006333    break;
006334  };
006335  #endif /* SQLITE_OMIT_PRAGMA */
006336  
006337  #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
006338  /* Opcode: Vacuum P1 * * * *
006339  **
006340  ** Vacuum the entire database P1.  P1 is 0 for "main", and 2 or more
006341  ** for an attached database.  The "temp" database may not be vacuumed.
006342  */
006343  case OP_Vacuum: {
006344    assert( p->readOnly==0 );
006345    rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
006346    if( rc ) goto abort_due_to_error;
006347    break;
006348  }
006349  #endif
006350  
006351  #if !defined(SQLITE_OMIT_AUTOVACUUM)
006352  /* Opcode: IncrVacuum P1 P2 * * *
006353  **
006354  ** Perform a single step of the incremental vacuum procedure on
006355  ** the P1 database. If the vacuum has finished, jump to instruction
006356  ** P2. Otherwise, fall through to the next instruction.
006357  */
006358  case OP_IncrVacuum: {        /* jump */
006359    Btree *pBt;
006360  
006361    assert( pOp->p1>=0 && pOp->p1<db->nDb );
006362    assert( DbMaskTest(p->btreeMask, pOp->p1) );
006363    assert( p->readOnly==0 );
006364    pBt = db->aDb[pOp->p1].pBt;
006365    rc = sqlite3BtreeIncrVacuum(pBt);
006366    VdbeBranchTaken(rc==SQLITE_DONE,2);
006367    if( rc ){
006368      if( rc!=SQLITE_DONE ) goto abort_due_to_error;
006369      rc = SQLITE_OK;
006370      goto jump_to_p2;
006371    }
006372    break;
006373  }
006374  #endif
006375  
006376  /* Opcode: Expire P1 * * * *
006377  **
006378  ** Cause precompiled statements to expire.  When an expired statement
006379  ** is executed using sqlite3_step() it will either automatically
006380  ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
006381  ** or it will fail with SQLITE_SCHEMA.
006382  ** 
006383  ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
006384  ** then only the currently executing statement is expired.
006385  */
006386  case OP_Expire: {
006387    if( !pOp->p1 ){
006388      sqlite3ExpirePreparedStatements(db);
006389    }else{
006390      p->expired = 1;
006391    }
006392    break;
006393  }
006394  
006395  #ifndef SQLITE_OMIT_SHARED_CACHE
006396  /* Opcode: TableLock P1 P2 P3 P4 *
006397  ** Synopsis: iDb=P1 root=P2 write=P3
006398  **
006399  ** Obtain a lock on a particular table. This instruction is only used when
006400  ** the shared-cache feature is enabled. 
006401  **
006402  ** P1 is the index of the database in sqlite3.aDb[] of the database
006403  ** on which the lock is acquired.  A readlock is obtained if P3==0 or
006404  ** a write lock if P3==1.
006405  **
006406  ** P2 contains the root-page of the table to lock.
006407  **
006408  ** P4 contains a pointer to the name of the table being locked. This is only
006409  ** used to generate an error message if the lock cannot be obtained.
006410  */
006411  case OP_TableLock: {
006412    u8 isWriteLock = (u8)pOp->p3;
006413    if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
006414      int p1 = pOp->p1; 
006415      assert( p1>=0 && p1<db->nDb );
006416      assert( DbMaskTest(p->btreeMask, p1) );
006417      assert( isWriteLock==0 || isWriteLock==1 );
006418      rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
006419      if( rc ){
006420        if( (rc&0xFF)==SQLITE_LOCKED ){
006421          const char *z = pOp->p4.z;
006422          sqlite3VdbeError(p, "database table is locked: %s", z);
006423        }
006424        goto abort_due_to_error;
006425      }
006426    }
006427    break;
006428  }
006429  #endif /* SQLITE_OMIT_SHARED_CACHE */
006430  
006431  #ifndef SQLITE_OMIT_VIRTUALTABLE
006432  /* Opcode: VBegin * * * P4 *
006433  **
006434  ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the 
006435  ** xBegin method for that table.
006436  **
006437  ** Also, whether or not P4 is set, check that this is not being called from
006438  ** within a callback to a virtual table xSync() method. If it is, the error
006439  ** code will be set to SQLITE_LOCKED.
006440  */
006441  case OP_VBegin: {
006442    VTable *pVTab;
006443    pVTab = pOp->p4.pVtab;
006444    rc = sqlite3VtabBegin(db, pVTab);
006445    if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
006446    if( rc ) goto abort_due_to_error;
006447    break;
006448  }
006449  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006450  
006451  #ifndef SQLITE_OMIT_VIRTUALTABLE
006452  /* Opcode: VCreate P1 P2 * * *
006453  **
006454  ** P2 is a register that holds the name of a virtual table in database 
006455  ** P1. Call the xCreate method for that table.
006456  */
006457  case OP_VCreate: {
006458    Mem sMem;          /* For storing the record being decoded */
006459    const char *zTab;  /* Name of the virtual table */
006460  
006461    memset(&sMem, 0, sizeof(sMem));
006462    sMem.db = db;
006463    /* Because P2 is always a static string, it is impossible for the
006464    ** sqlite3VdbeMemCopy() to fail */
006465    assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
006466    assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
006467    rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
006468    assert( rc==SQLITE_OK );
006469    zTab = (const char*)sqlite3_value_text(&sMem);
006470    assert( zTab || db->mallocFailed );
006471    if( zTab ){
006472      rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
006473    }
006474    sqlite3VdbeMemRelease(&sMem);
006475    if( rc ) goto abort_due_to_error;
006476    break;
006477  }
006478  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006479  
006480  #ifndef SQLITE_OMIT_VIRTUALTABLE
006481  /* Opcode: VDestroy P1 * * P4 *
006482  **
006483  ** P4 is the name of a virtual table in database P1.  Call the xDestroy method
006484  ** of that table.
006485  */
006486  case OP_VDestroy: {
006487    db->nVDestroy++;
006488    rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
006489    db->nVDestroy--;
006490    if( rc ) goto abort_due_to_error;
006491    break;
006492  }
006493  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006494  
006495  #ifndef SQLITE_OMIT_VIRTUALTABLE
006496  /* Opcode: VOpen P1 * * P4 *
006497  **
006498  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
006499  ** P1 is a cursor number.  This opcode opens a cursor to the virtual
006500  ** table and stores that cursor in P1.
006501  */
006502  case OP_VOpen: {
006503    VdbeCursor *pCur;
006504    sqlite3_vtab_cursor *pVCur;
006505    sqlite3_vtab *pVtab;
006506    const sqlite3_module *pModule;
006507  
006508    assert( p->bIsReader );
006509    pCur = 0;
006510    pVCur = 0;
006511    pVtab = pOp->p4.pVtab->pVtab;
006512    if( pVtab==0 || NEVER(pVtab->pModule==0) ){
006513      rc = SQLITE_LOCKED;
006514      goto abort_due_to_error;
006515    }
006516    pModule = pVtab->pModule;
006517    rc = pModule->xOpen(pVtab, &pVCur);
006518    sqlite3VtabImportErrmsg(p, pVtab);
006519    if( rc ) goto abort_due_to_error;
006520  
006521    /* Initialize sqlite3_vtab_cursor base class */
006522    pVCur->pVtab = pVtab;
006523  
006524    /* Initialize vdbe cursor object */
006525    pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
006526    if( pCur ){
006527      pCur->uc.pVCur = pVCur;
006528      pVtab->nRef++;
006529    }else{
006530      assert( db->mallocFailed );
006531      pModule->xClose(pVCur);
006532      goto no_mem;
006533    }
006534    break;
006535  }
006536  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006537  
006538  #ifndef SQLITE_OMIT_VIRTUALTABLE
006539  /* Opcode: VFilter P1 P2 P3 P4 *
006540  ** Synopsis: iplan=r[P3] zplan='P4'
006541  **
006542  ** P1 is a cursor opened using VOpen.  P2 is an address to jump to if
006543  ** the filtered result set is empty.
006544  **
006545  ** P4 is either NULL or a string that was generated by the xBestIndex
006546  ** method of the module.  The interpretation of the P4 string is left
006547  ** to the module implementation.
006548  **
006549  ** This opcode invokes the xFilter method on the virtual table specified
006550  ** by P1.  The integer query plan parameter to xFilter is stored in register
006551  ** P3. Register P3+1 stores the argc parameter to be passed to the
006552  ** xFilter method. Registers P3+2..P3+1+argc are the argc
006553  ** additional parameters which are passed to
006554  ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
006555  **
006556  ** A jump is made to P2 if the result set after filtering would be empty.
006557  */
006558  case OP_VFilter: {   /* jump */
006559    int nArg;
006560    int iQuery;
006561    const sqlite3_module *pModule;
006562    Mem *pQuery;
006563    Mem *pArgc;
006564    sqlite3_vtab_cursor *pVCur;
006565    sqlite3_vtab *pVtab;
006566    VdbeCursor *pCur;
006567    int res;
006568    int i;
006569    Mem **apArg;
006570  
006571    pQuery = &aMem[pOp->p3];
006572    pArgc = &pQuery[1];
006573    pCur = p->apCsr[pOp->p1];
006574    assert( memIsValid(pQuery) );
006575    REGISTER_TRACE(pOp->p3, pQuery);
006576    assert( pCur->eCurType==CURTYPE_VTAB );
006577    pVCur = pCur->uc.pVCur;
006578    pVtab = pVCur->pVtab;
006579    pModule = pVtab->pModule;
006580  
006581    /* Grab the index number and argc parameters */
006582    assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
006583    nArg = (int)pArgc->u.i;
006584    iQuery = (int)pQuery->u.i;
006585  
006586    /* Invoke the xFilter method */
006587    res = 0;
006588    apArg = p->apArg;
006589    for(i = 0; i<nArg; i++){
006590      apArg[i] = &pArgc[i+1];
006591    }
006592    rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
006593    sqlite3VtabImportErrmsg(p, pVtab);
006594    if( rc ) goto abort_due_to_error;
006595    res = pModule->xEof(pVCur);
006596    pCur->nullRow = 0;
006597    VdbeBranchTaken(res!=0,2);
006598    if( res ) goto jump_to_p2;
006599    break;
006600  }
006601  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006602  
006603  #ifndef SQLITE_OMIT_VIRTUALTABLE
006604  /* Opcode: VColumn P1 P2 P3 * *
006605  ** Synopsis: r[P3]=vcolumn(P2)
006606  **
006607  ** Store the value of the P2-th column of
006608  ** the row of the virtual-table that the 
006609  ** P1 cursor is pointing to into register P3.
006610  */
006611  case OP_VColumn: {
006612    sqlite3_vtab *pVtab;
006613    const sqlite3_module *pModule;
006614    Mem *pDest;
006615    sqlite3_context sContext;
006616  
006617    VdbeCursor *pCur = p->apCsr[pOp->p1];
006618    assert( pCur->eCurType==CURTYPE_VTAB );
006619    assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
006620    pDest = &aMem[pOp->p3];
006621    memAboutToChange(p, pDest);
006622    if( pCur->nullRow ){
006623      sqlite3VdbeMemSetNull(pDest);
006624      break;
006625    }
006626    pVtab = pCur->uc.pVCur->pVtab;
006627    pModule = pVtab->pModule;
006628    assert( pModule->xColumn );
006629    memset(&sContext, 0, sizeof(sContext));
006630    sContext.pOut = pDest;
006631    MemSetTypeFlag(pDest, MEM_Null);
006632    rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
006633    sqlite3VtabImportErrmsg(p, pVtab);
006634    if( sContext.isError ){
006635      rc = sContext.isError;
006636    }
006637    sqlite3VdbeChangeEncoding(pDest, encoding);
006638    REGISTER_TRACE(pOp->p3, pDest);
006639    UPDATE_MAX_BLOBSIZE(pDest);
006640  
006641    if( sqlite3VdbeMemTooBig(pDest) ){
006642      goto too_big;
006643    }
006644    if( rc ) goto abort_due_to_error;
006645    break;
006646  }
006647  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006648  
006649  #ifndef SQLITE_OMIT_VIRTUALTABLE
006650  /* Opcode: VNext P1 P2 * * *
006651  **
006652  ** Advance virtual table P1 to the next row in its result set and
006653  ** jump to instruction P2.  Or, if the virtual table has reached
006654  ** the end of its result set, then fall through to the next instruction.
006655  */
006656  case OP_VNext: {   /* jump */
006657    sqlite3_vtab *pVtab;
006658    const sqlite3_module *pModule;
006659    int res;
006660    VdbeCursor *pCur;
006661  
006662    res = 0;
006663    pCur = p->apCsr[pOp->p1];
006664    assert( pCur->eCurType==CURTYPE_VTAB );
006665    if( pCur->nullRow ){
006666      break;
006667    }
006668    pVtab = pCur->uc.pVCur->pVtab;
006669    pModule = pVtab->pModule;
006670    assert( pModule->xNext );
006671  
006672    /* Invoke the xNext() method of the module. There is no way for the
006673    ** underlying implementation to return an error if one occurs during
006674    ** xNext(). Instead, if an error occurs, true is returned (indicating that 
006675    ** data is available) and the error code returned when xColumn or
006676    ** some other method is next invoked on the save virtual table cursor.
006677    */
006678    rc = pModule->xNext(pCur->uc.pVCur);
006679    sqlite3VtabImportErrmsg(p, pVtab);
006680    if( rc ) goto abort_due_to_error;
006681    res = pModule->xEof(pCur->uc.pVCur);
006682    VdbeBranchTaken(!res,2);
006683    if( !res ){
006684      /* If there is data, jump to P2 */
006685      goto jump_to_p2_and_check_for_interrupt;
006686    }
006687    goto check_for_interrupt;
006688  }
006689  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006690  
006691  #ifndef SQLITE_OMIT_VIRTUALTABLE
006692  /* Opcode: VRename P1 * * P4 *
006693  **
006694  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
006695  ** This opcode invokes the corresponding xRename method. The value
006696  ** in register P1 is passed as the zName argument to the xRename method.
006697  */
006698  case OP_VRename: {
006699    sqlite3_vtab *pVtab;
006700    Mem *pName;
006701  
006702    pVtab = pOp->p4.pVtab->pVtab;
006703    pName = &aMem[pOp->p1];
006704    assert( pVtab->pModule->xRename );
006705    assert( memIsValid(pName) );
006706    assert( p->readOnly==0 );
006707    REGISTER_TRACE(pOp->p1, pName);
006708    assert( pName->flags & MEM_Str );
006709    testcase( pName->enc==SQLITE_UTF8 );
006710    testcase( pName->enc==SQLITE_UTF16BE );
006711    testcase( pName->enc==SQLITE_UTF16LE );
006712    rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
006713    if( rc ) goto abort_due_to_error;
006714    rc = pVtab->pModule->xRename(pVtab, pName->z);
006715    sqlite3VtabImportErrmsg(p, pVtab);
006716    p->expired = 0;
006717    if( rc ) goto abort_due_to_error;
006718    break;
006719  }
006720  #endif
006721  
006722  #ifndef SQLITE_OMIT_VIRTUALTABLE
006723  /* Opcode: VUpdate P1 P2 P3 P4 P5
006724  ** Synopsis: data=r[P3@P2]
006725  **
006726  ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
006727  ** This opcode invokes the corresponding xUpdate method. P2 values
006728  ** are contiguous memory cells starting at P3 to pass to the xUpdate 
006729  ** invocation. The value in register (P3+P2-1) corresponds to the 
006730  ** p2th element of the argv array passed to xUpdate.
006731  **
006732  ** The xUpdate method will do a DELETE or an INSERT or both.
006733  ** The argv[0] element (which corresponds to memory cell P3)
006734  ** is the rowid of a row to delete.  If argv[0] is NULL then no 
006735  ** deletion occurs.  The argv[1] element is the rowid of the new 
006736  ** row.  This can be NULL to have the virtual table select the new 
006737  ** rowid for itself.  The subsequent elements in the array are 
006738  ** the values of columns in the new row.
006739  **
006740  ** If P2==1 then no insert is performed.  argv[0] is the rowid of
006741  ** a row to delete.
006742  **
006743  ** P1 is a boolean flag. If it is set to true and the xUpdate call
006744  ** is successful, then the value returned by sqlite3_last_insert_rowid() 
006745  ** is set to the value of the rowid for the row just inserted.
006746  **
006747  ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
006748  ** apply in the case of a constraint failure on an insert or update.
006749  */
006750  case OP_VUpdate: {
006751    sqlite3_vtab *pVtab;
006752    const sqlite3_module *pModule;
006753    int nArg;
006754    int i;
006755    sqlite_int64 rowid;
006756    Mem **apArg;
006757    Mem *pX;
006758  
006759    assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback 
006760         || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
006761    );
006762    assert( p->readOnly==0 );
006763    pVtab = pOp->p4.pVtab->pVtab;
006764    if( pVtab==0 || NEVER(pVtab->pModule==0) ){
006765      rc = SQLITE_LOCKED;
006766      goto abort_due_to_error;
006767    }
006768    pModule = pVtab->pModule;
006769    nArg = pOp->p2;
006770    assert( pOp->p4type==P4_VTAB );
006771    if( ALWAYS(pModule->xUpdate) ){
006772      u8 vtabOnConflict = db->vtabOnConflict;
006773      apArg = p->apArg;
006774      pX = &aMem[pOp->p3];
006775      for(i=0; i<nArg; i++){
006776        assert( memIsValid(pX) );
006777        memAboutToChange(p, pX);
006778        apArg[i] = pX;
006779        pX++;
006780      }
006781      db->vtabOnConflict = pOp->p5;
006782      rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
006783      db->vtabOnConflict = vtabOnConflict;
006784      sqlite3VtabImportErrmsg(p, pVtab);
006785      if( rc==SQLITE_OK && pOp->p1 ){
006786        assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
006787        db->lastRowid = lastRowid = rowid;
006788      }
006789      if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
006790        if( pOp->p5==OE_Ignore ){
006791          rc = SQLITE_OK;
006792        }else{
006793          p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
006794        }
006795      }else{
006796        p->nChange++;
006797      }
006798      if( rc ) goto abort_due_to_error;
006799    }
006800    break;
006801  }
006802  #endif /* SQLITE_OMIT_VIRTUALTABLE */
006803  
006804  #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
006805  /* Opcode: Pagecount P1 P2 * * *
006806  **
006807  ** Write the current number of pages in database P1 to memory cell P2.
006808  */
006809  case OP_Pagecount: {            /* out2 */
006810    pOut = out2Prerelease(p, pOp);
006811    pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
006812    break;
006813  }
006814  #endif
006815  
006816  
006817  #ifndef  SQLITE_OMIT_PAGER_PRAGMAS
006818  /* Opcode: MaxPgcnt P1 P2 P3 * *
006819  **
006820  ** Try to set the maximum page count for database P1 to the value in P3.
006821  ** Do not let the maximum page count fall below the current page count and
006822  ** do not change the maximum page count value if P3==0.
006823  **
006824  ** Store the maximum page count after the change in register P2.
006825  */
006826  case OP_MaxPgcnt: {            /* out2 */
006827    unsigned int newMax;
006828    Btree *pBt;
006829  
006830    pOut = out2Prerelease(p, pOp);
006831    pBt = db->aDb[pOp->p1].pBt;
006832    newMax = 0;
006833    if( pOp->p3 ){
006834      newMax = sqlite3BtreeLastPage(pBt);
006835      if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
006836    }
006837    pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
006838    break;
006839  }
006840  #endif
006841  
006842  
006843  /* Opcode: Init P1 P2 * P4 *
006844  ** Synopsis: Start at P2
006845  **
006846  ** Programs contain a single instance of this opcode as the very first
006847  ** opcode.
006848  **
006849  ** If tracing is enabled (by the sqlite3_trace()) interface, then
006850  ** the UTF-8 string contained in P4 is emitted on the trace callback.
006851  ** Or if P4 is blank, use the string returned by sqlite3_sql().
006852  **
006853  ** If P2 is not zero, jump to instruction P2.
006854  **
006855  ** Increment the value of P1 so that OP_Once opcodes will jump the
006856  ** first time they are evaluated for this run.
006857  */
006858  case OP_Init: {          /* jump */
006859    char *zTrace;
006860    int i;
006861  
006862    /* If the P4 argument is not NULL, then it must be an SQL comment string.
006863    ** The "--" string is broken up to prevent false-positives with srcck1.c.
006864    **
006865    ** This assert() provides evidence for:
006866    ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
006867    ** would have been returned by the legacy sqlite3_trace() interface by
006868    ** using the X argument when X begins with "--" and invoking
006869    ** sqlite3_expanded_sql(P) otherwise.
006870    */
006871    assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
006872    assert( pOp==p->aOp );  /* Always instruction 0 */
006873  
006874  #ifndef SQLITE_OMIT_TRACE
006875    if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
006876     && !p->doingRerun
006877     && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
006878    ){
006879  #ifndef SQLITE_OMIT_DEPRECATED
006880      if( db->mTrace & SQLITE_TRACE_LEGACY ){
006881        void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
006882        char *z = sqlite3VdbeExpandSql(p, zTrace);
006883        x(db->pTraceArg, z);
006884        sqlite3_free(z);
006885      }else
006886  #endif
006887      {
006888        (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
006889      }
006890    }
006891  #ifdef SQLITE_USE_FCNTL_TRACE
006892    zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
006893    if( zTrace ){
006894      int j;
006895      for(j=0; j<db->nDb; j++){
006896        if( DbMaskTest(p->btreeMask, j)==0 ) continue;
006897        sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
006898      }
006899    }
006900  #endif /* SQLITE_USE_FCNTL_TRACE */
006901  #ifdef SQLITE_DEBUG
006902    if( (db->flags & SQLITE_SqlTrace)!=0
006903     && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
006904    ){
006905      sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
006906    }
006907  #endif /* SQLITE_DEBUG */
006908  #endif /* SQLITE_OMIT_TRACE */
006909    assert( pOp->p2>0 );
006910    if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
006911      for(i=1; i<p->nOp; i++){
006912        if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
006913      }
006914      pOp->p1 = 0;
006915    }
006916    pOp->p1++;
006917    goto jump_to_p2;
006918  }
006919  
006920  #ifdef SQLITE_ENABLE_CURSOR_HINTS
006921  /* Opcode: CursorHint P1 * * P4 *
006922  **
006923  ** Provide a hint to cursor P1 that it only needs to return rows that
006924  ** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
006925  ** to values currently held in registers.  TK_COLUMN terms in the P4
006926  ** expression refer to columns in the b-tree to which cursor P1 is pointing.
006927  */
006928  case OP_CursorHint: {
006929    VdbeCursor *pC;
006930  
006931    assert( pOp->p1>=0 && pOp->p1<p->nCursor );
006932    assert( pOp->p4type==P4_EXPR );
006933    pC = p->apCsr[pOp->p1];
006934    if( pC ){
006935      assert( pC->eCurType==CURTYPE_BTREE );
006936      sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
006937                             pOp->p4.pExpr, aMem);
006938    }
006939    break;
006940  }
006941  #endif /* SQLITE_ENABLE_CURSOR_HINTS */
006942  
006943  /* Opcode: Noop * * * * *
006944  **
006945  ** Do nothing.  This instruction is often useful as a jump
006946  ** destination.
006947  */
006948  /*
006949  ** The magic Explain opcode are only inserted when explain==2 (which
006950  ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
006951  ** This opcode records information from the optimizer.  It is the
006952  ** the same as a no-op.  This opcodesnever appears in a real VM program.
006953  */
006954  default: {          /* This is really OP_Noop and OP_Explain */
006955    assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
006956    break;
006957  }
006958  
006959  /*****************************************************************************
006960  ** The cases of the switch statement above this line should all be indented
006961  ** by 6 spaces.  But the left-most 6 spaces have been removed to improve the
006962  ** readability.  From this point on down, the normal indentation rules are
006963  ** restored.
006964  *****************************************************************************/
006965      }
006966  
006967  #ifdef VDBE_PROFILE
006968      {
006969        u64 endTime = sqlite3Hwtime();
006970        if( endTime>start ) pOrigOp->cycles += endTime - start;
006971        pOrigOp->cnt++;
006972      }
006973  #endif
006974  
006975      /* The following code adds nothing to the actual functionality
006976      ** of the program.  It is only here for testing and debugging.
006977      ** On the other hand, it does burn CPU cycles every time through
006978      ** the evaluator loop.  So we can leave it out when NDEBUG is defined.
006979      */
006980  #ifndef NDEBUG
006981      assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
006982  
006983  #ifdef SQLITE_DEBUG
006984      if( db->flags & SQLITE_VdbeTrace ){
006985        u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
006986        if( rc!=0 ) printf("rc=%d\n",rc);
006987        if( opProperty & (OPFLG_OUT2) ){
006988          registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
006989        }
006990        if( opProperty & OPFLG_OUT3 ){
006991          registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
006992        }
006993      }
006994  #endif  /* SQLITE_DEBUG */
006995  #endif  /* NDEBUG */
006996    }  /* The end of the for(;;) loop the loops through opcodes */
006997  
006998    /* If we reach this point, it means that execution is finished with
006999    ** an error of some kind.
007000    */
007001  abort_due_to_error:
007002    if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
007003    assert( rc );
007004    if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
007005      sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
007006    }
007007    p->rc = rc;
007008    sqlite3SystemError(db, rc);
007009    testcase( sqlite3GlobalConfig.xLog!=0 );
007010    sqlite3_log(rc, "statement aborts at %d: [%s] %s", 
007011                     (int)(pOp - aOp), p->zSql, p->zErrMsg);
007012    sqlite3VdbeHalt(p);
007013    if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
007014    rc = SQLITE_ERROR;
007015    if( resetSchemaOnFault>0 ){
007016      sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
007017    }
007018  
007019    /* This is the only way out of this procedure.  We have to
007020    ** release the mutexes on btrees that were acquired at the
007021    ** top. */
007022  vdbe_return:
007023    db->lastRowid = lastRowid;
007024    testcase( nVmStep>0 );
007025    p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
007026    sqlite3VdbeLeave(p);
007027    assert( rc!=SQLITE_OK || nExtraDelete==0 
007028         || sqlite3_strlike("DELETE%",p->zSql,0)!=0 
007029    );
007030    return rc;
007031  
007032    /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
007033    ** is encountered.
007034    */
007035  too_big:
007036    sqlite3VdbeError(p, "string or blob too big");
007037    rc = SQLITE_TOOBIG;
007038    goto abort_due_to_error;
007039  
007040    /* Jump to here if a malloc() fails.
007041    */
007042  no_mem:
007043    sqlite3OomFault(db);
007044    sqlite3VdbeError(p, "out of memory");
007045    rc = SQLITE_NOMEM_BKPT;
007046    goto abort_due_to_error;
007047  
007048    /* Jump to here if the sqlite3_interrupt() API sets the interrupt
007049    ** flag.
007050    */
007051  abort_due_to_interrupt:
007052    assert( db->u1.isInterrupted );
007053    rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
007054    p->rc = rc;
007055    sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
007056    goto abort_due_to_error;
007057  }